Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleWHOLE PLANT AND ECOPHYSIOLOGY
Open Access

More Productive Than Maize in the Midwest: How Does Miscanthus Do It?

Frank G. Dohleman, Stephen P. Long
Frank G. Dohleman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen P. Long
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 2009. DOI: https://doi.org/10.1104/pp.109.139162

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2009 American Society of Plant Biologists

Abstract

In the first side-by-side large-scale trials of these two C4 crops in the U.S. Corn Belt, Miscanthus (Miscanthus × giganteus) was 59% more productive than grain maize (Zea mays). Total productivity is the product of the total solar radiation incident per unit land area and the efficiencies of light interception (ϵi) and its conversion into aboveground biomass (ϵca). Averaged over two growing seasons, ϵca did not differ, but ϵi was 61% higher for Miscanthus, which developed a leaf canopy earlier and maintained it later. The diurnal course of photosynthesis was measured on sunlit and shaded leaves of each species on 26 dates. The daily integral of leaf-level photosynthetic CO2 uptake differed slightly when integrated across two growing seasons but was up to 60% higher in maize in mid-summer. The average leaf area of Miscanthus was double that of maize, with the result that calculated canopy photosynthesis was 44% higher in Miscanthus, corresponding closely to the biomass differences. To determine the basis of differences in mid-season leaf photosynthesis, light and CO2 responses were analyzed to determine in vivo biochemical limitations. Maize had a higher maximum velocity of phosphoenolpyruvate carboxylation, velocity of phosphoenolpyruvate regeneration, light saturated rate of photosynthesis, and higher maximum quantum efficiency of CO2 assimilation. These biochemical differences, however, were more than offset by the larger leaf area and its longer duration in Miscanthus. The results indicate that the full potential of C4 photosynthetic productivity is not achieved by modern temperate maize cultivars.

  • Received March 28, 2009.
  • Accepted June 14, 2009.
  • Published June 17, 2009.

View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
More Productive Than Maize in the Midwest: How Does Miscanthus Do It?
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
More Productive Than Maize in the Midwest: How Does Miscanthus Do It?
Frank G. Dohleman, Stephen P. Long
Plant Physiology Aug 2009, 150 (4) 2104-2115; DOI: 10.1104/pp.109.139162

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
More Productive Than Maize in the Midwest: How Does Miscanthus Do It?
Frank G. Dohleman, Stephen P. Long
Plant Physiology Aug 2009, 150 (4) 2104-2115; DOI: 10.1104/pp.109.139162
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Acknowledgments
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 150 (4)
Plant Physiology
Vol. 150, Issue 4
August 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
View this article with LENS

More in this TOC Section

  • Acclimation of Leaf Nitrogen to Vertical Light Gradient at Anthesis in Wheat Is a Whole-Plant Process That Scales with the Size of the Canopy
  • Functional Characterization of a Silicon Transporter Gene Implicated in Silicon Distribution in Barley
  • Stem Transcriptome Reveals Mechanisms to Reduce the Energetic Cost of Shade-Avoidance Responses in Tomato
Show more Whole Plant and Ecophysiology

Similar Articles

Subjects

  • The Grasses
  • Enhancing Photosynthesis

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire