Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleBIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES
Open Access

A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee

Laura A. Lallemand, Chloe Zubieta, Soon Goo Lee, Yechun Wang, Samira Acajjaoui, Joanna Timmins, Sean McSweeney, Joseph M. Jez, James G. McCarthy, Andrew A. McCarthy
Laura A. Lallemand
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chloe Zubieta
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Soon Goo Lee
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yechun Wang
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samira Acajjaoui
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joanna Timmins
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean McSweeney
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph M. Jez
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James G. McCarthy
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew A. McCarthy
European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France (L.A.L., C.Z., S.A., J.T., S.M.); Department of Biology, Washington University, St. Louis, Missouri 63130 (S.G.L., J.M.J.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.W.); Nestlé Research and Development, Notre-Dame d’Oé, BP 49416, Tours 37097, France (J.G.M.); Unit of Virus Host-Cell Interactions, Université Joseph Fourier-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5233, 38042 Grenoble, France (A.A.M.); and European Molecular Biology Laboratory, BP 181, 38042, Grenoble, France (A.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: andrewmc@embl.fr

Published September 2012. DOI: https://doi.org/10.1104/pp.112.202051

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Additional Files
  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    HPLC elution profiles for diCQA production by HCT. A, Native HCT reaction activity. B, His-154-Asn mutant HCT reaction activity. Enzyme at 0.5 µm was incubated with 1 mm 5-CQA and 1 mm CoA, and samples were taken at 15 min (top panels) and after overnight incubation (O/N; bottom panels). The relevant control reactions are shown in Supplemental Figure S8.

  • Figure 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2.

    The overall structures of HCT and TRI101 are composed of two structurally related domains. A, The HCT N-terminal domain (residues 1–189) is colored in blue and the C-terminal domain (residues 224–434) is colored in gold. B, TRI101 in complex with CoA and DON. The N- and C-terminal domains are colored as for HCT, and the TRI101 substrates are shown in gray (CoA) or green (DON) balls.

  • Figure 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3.

    Comparison of the native and Lys-HCT crystal structures with the TRI101-DON complex in the active site region. A, Native HCT molecule 1. B, Native HCT molecule 2 (similar to Lys mutant crystal form 2). C, Lys mutant crystal form 1. D, TRI101-DON complex structure. All the structures are shown in the same relative orientation to highlight the conformation of the Val-31 to Pro-37 loop in HCT. The His residues found in the active site region of HCT and TRI101 are show as sticks, and DON is colored in green.

  • Figure 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4.

    Comparison of the best docking results obtained for HCT with the TRI101-DON complex. A, Quinic acid in SBP1. B, Caffeic acid in SBP2. C, 5-CQA encompassing SBP1 and -2. D, TRI101-DON complex. E, TRI101 precludes hydroxycinnamic acid binding. F, 3,5-diCQA showing SBP1 and SPB3. Residues lining the substrate-binding site are shown as sticks, with substrates colored in green. G, Sequence and structure alignment of HCT with other hydroxycinnamoyl transferases and representative members of the BAHD superfamily. Secondary structures of the native HCT and FsTRI101 are shown above and below the alignment, respectively. Residues predicted to be involved in substrate binding by HCT are denoted as gray circles for CoA, magenta polygons for hydroxycinnamic moiety, and green stars for acyl acceptor moiety. A full alignment is shown in Supplemental Figure S9.

Tables

  • Figures
  • Additional Files
    • View popup
    Table I. Data collection and refinement statistics

    Values in parentheses are for the outermost resolution shell Embedded Image calculated for the whole data set Embedded Image. Rfree was calculated as for Rcryst, with 5% of the data omitted from the structural refinement.

    Crystal ParametersCrystal Name
    HCTLys-HCT Form 1Lys-HCT Form 2
    Data collection
     Wavelength (Å)0.8730.9390.976
     Space groupP42212P212121C2221
     Unit-cell dimensions (Å)a = 116.1a = 63.55a = 76.55
    b = 116.1b = 116.48b = 96.28
    c = 158.9c = 118.04c = 118.76
     Molecules221
     Resolution range (Å)45–3.0 (3.2–3.0)50–1.7 (1.8–1.7)50–2.5 (2.6–2.5)
     Observed reflections [I/σ(I)>0]72,116674,66255,469
     Unique reflections22,07392,17914,082
     Completeness (%)99.0 (98.4)95.0 (83.9)90.5 (79.2)
     Rmerge (%)16.6 (56.6)9.6 (53.3)7.1 (42.7)
     <I/σ(I)>8.5 (3.1)12.7 (2.8)16.8 (3.5)
    Model quality indicators
     Rcryst (%)0.1890.1680.194
     Rfree (%)0.2500.2030.254
     Mean B-factor (Å2)11.619.834.0
     Root-mean-square-deviation  bonds (Å)/angles (°)0.011/1.50.026/2.00.012/1.5
    • View popup
    Table II. Steady-state kinetic parameters of native and mutant HCT

    Assays were performed as described in “Materials and Methods,” and average values ± se (n = 3) are also shown.

    HCTShikimateQuinate5-CQA
    KmVmaxVmax/KmKmVmaxVmax/KmKmVmaxVmax/Km
    μmnkat mg−1μmnkat mg−1μmnkat mg−1
    Native75.0 ± 8.513.55 ± 0.38180,700430 ± 1120.74 ± 0.101,720757 ± 1000.072 ± 0.00395.1
    Lys-HCT30.7 ± 6.47.92 ± 0.34258,000608 ± 930.070 ± 0.004115
    His-154-Asn35.4 ± 7.16.83 ± 0.44192,900351 ± 470.635 ± 0.0251,809
    Leu-400-Thr640 ± 917.64 ± 0.4711,940162 ± 146.22 ± 0.2038,4001,930 ± 6100.063 ± 0.01032.6
    Phe-402-Tyr316 ± 3111.32 ± 0.3835,820233 ± 203.73 ± 0.1416,010745 ± 900.223 ± 0.010299
    Leu-400-Thr/Phe-402-Tyr1,160 ± 1913.64 ± 0.253,13799 ± 67.98 ± 0.1580,610210 ± 280.161 ± 0.005767

Additional Files

  • Figures
  • Tables
  • Supplemental Data

    Supplemental Figures

    Files in this Data Supplement:

    • Supplemental Data - Supplemental Figures 1-14
    • Supplemental Data - Supplemental Figure Legends
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee
Laura A. Lallemand, Chloe Zubieta, Soon Goo Lee, Yechun Wang, Samira Acajjaoui, Joanna Timmins, Sean McSweeney, Joseph M. Jez, James G. McCarthy, Andrew A. McCarthy
Plant Physiology Sep 2012, 160 (1) 249-260; DOI: 10.1104/pp.112.202051

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee
Laura A. Lallemand, Chloe Zubieta, Soon Goo Lee, Yechun Wang, Samira Acajjaoui, Joanna Timmins, Sean McSweeney, Joseph M. Jez, James G. McCarthy, Andrew A. McCarthy
Plant Physiology Sep 2012, 160 (1) 249-260; DOI: 10.1104/pp.112.202051
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • MATERIALS AND METHODS
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 160 (1)
Plant Physiology
Vol. 160, Issue 1
Sep 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
  • Front Matter (PDF)
View this article with LENS

More in this TOC Section

  • Decreasing the Mitochondrial Synthesis of Malate in Potato Tubers Does Not Affect Plastidial Starch Synthesis, Suggesting That the Physiological Regulation of ADPglucose Pyrophosphorylase Is Context Dependent
  • UDP-Glycosyltransferases from the UGT73C Subfamily in Barbarea vulgaris Catalyze Sapogenin 3-O-Glucosylation in Saponin-Mediated Insect Resistance
  • Acyl Editing and Headgroup Exchange Are the Major Mechanisms That Direct Polyunsaturated Fatty Acid Flux into Triacylglycerols
Show more Article

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire