Skip to main content

Main menu

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
Open Access

Intergenic Sequence between Arabidopsis Caseinolytic Protease B-Cytoplasmic/Heat Shock Protein100 and Choline Kinase Genes Functions as a Heat-Inducible Bidirectional Promoter

Ratnesh Chandra Mishra, Anil Grover
Ratnesh Chandra Mishra
Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anil Grover
Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: anil.anilgrover@gmail.com

Published November 2014. DOI: https://doi.org/10.1104/pp.114.250787

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2014 American Society of Plant Biologists. All Rights Reserved.

Abstract

In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position −517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling.

  • Glossary

    HSE
    heat shock element
    STRE
    stress-responsive element
    UTR
    untranslated region
    IRES
    internal ribosome entry site
    CK
    choline kinase
    PC
    phosphatidylcholine
    PA
    phosphatidic acid
    TSS
    transcription start site
    Col-0
    Ecotype Columbia-0 of Arabidopsis
    T-DNA
    transfer DNA
    cDNA
    complementary DNA
    • Received September 21, 2014.
    • Accepted October 1, 2014.
    • Published October 3, 2014.

    View Full Text
    PreviousNext
    Back to top

    Table of Contents

    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word on Plant Physiology.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Intergenic Sequence between Arabidopsis Caseinolytic Protease B-Cytoplasmic/Heat Shock Protein100 and Choline Kinase Genes Functions as a Heat-Inducible Bidirectional Promoter
    (Your Name) has sent you a message from Plant Physiology
    (Your Name) thought you would like to see the Plant Physiology web site.
    Citation Tools
    Intergenic Sequence between Arabidopsis Caseinolytic Protease B-Cytoplasmic/Heat Shock Protein100 and Choline Kinase Genes Functions as a Heat-Inducible Bidirectional Promoter
    Ratnesh Chandra Mishra, Anil Grover
    Plant Physiology Nov 2014, 166 (3) 1646-1658; DOI: 10.1104/pp.114.250787

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Request Permissions
    Share
    Intergenic Sequence between Arabidopsis Caseinolytic Protease B-Cytoplasmic/Heat Shock Protein100 and Choline Kinase Genes Functions as a Heat-Inducible Bidirectional Promoter
    Ratnesh Chandra Mishra, Anil Grover
    Plant Physiology Nov 2014, 166 (3) 1646-1658; DOI: 10.1104/pp.114.250787
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • RESULTS
      • DISCUSSION
      • MATERIALS AND METHODS
      • Acknowledgments
      • Footnotes
      • REFERENCES
    • Figures & Data
    • Info & Metrics
    • PDF

    In this issue

    Plant Physiology: 166 (3)
    Plant Physiology
    Vol. 166, Issue 3
    Nov 2014
    • Table of Contents
    • Table of Contents (PDF)
    • About the Cover
    • Index by author
    • Advertising (PDF)
    • Ed Board (PDF)
    • Front Matter (PDF)
    View this article with LENS

    More in this TOC Section

    Articles

    • Developmental Programming of Thermonastic Leaf Movement
    • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
    • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
    Show more Articles

    SIGNALING AND RESPONSE

    • Multi-omics Analysis Reveals Sequential Roles for ABA during Seed Maturation
    • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
    • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
    Show more SIGNALING AND RESPONSE

    Similar Articles

    Our Content

    • Home
    • Current Issue
    • Plant Physiology Preview
    • Archive
    • Focus Collections
    • Classic Collections
    • The Plant Cell
    • Plant Direct
    • Plantae
    • ASPB

    For Authors

    • Instructions
    • Submit a Manuscript
    • Editorial Board and Staff
    • Policies
    • Recognizing our Authors

    For Reviewers

    • Instructions
    • Journal Miles
    • Policies

    Other Services

    • Permissions
    • Librarian resources
    • Advertise in our journals
    • Alerts
    • RSS Feeds

    Copyright © 2019 by The American Society of Plant Biologists

    Powered by HighWire