Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Photomorphogenesis in Arabidopsis thaliana (L.) Heynh

Threshold Intensities and Blue-Far-red Synergism in Floral Induction

J. A. M. Brown, W. H. Klein
J. A. M. Brown
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. H. Klein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 1971. DOI: https://doi.org/10.1104/pp.47.3.393

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1971 American Society of Plant Biologists

Abstract

Arabidopsis seeds were germinated on sterile mineral agar supplemented with 1% glucose and cultured under continuous light regimes. With 4-hour incandescent plus 20-hour monochromatic illumination in the region from 400 to 485 nanometers there was effective floral induction at an intensity of 100 microwatts per square centimeter. Exclusion of far red wave lengths from the 4-hour incandescent period sharply reduced the effectiveness of subsequent monochromatic blue light in promoting floral induction. Delayed floral induction occurred under continuous incandescent light lacking far red and was attributable to the blue wave lengths. Continuous 485 nanometer (100 microwatts per square centimeter) exposure without any white light treatment during the postgermination growth period was ineffective in floral induction and meristem development. Light at 730 nanometers under the same conditions was partially effective, whereas energy between 500 and 700 nanometers was completely ineffective. When continuous monochromatic light at a 3-fold higher energy level was administered, all photomorphogenic responses were accomplished with 485 nanometer light, including germination and 100% floral induction without any white light treatment at any time during the experiment. Almost equal quantum effectiveness was calculated when equivalent quantum flux densities in the region from 710 to 740 nanometers or at 485 nanometers were used. It is postulated that floral induction in Arabidopsis may be the result of a continuous excitation of a stable form of far red-absorbing phytochrome localized in or on a membrane, and that excitation can be either by direct absorption of energy by far red-absorbing phytochrome or by transfer from an accessory pigment.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Photomorphogenesis in Arabidopsis thaliana (L.) Heynh
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Photomorphogenesis in Arabidopsis thaliana (L.) Heynh
J. A. M. Brown, W. H. Klein
Plant Physiology Mar 1971, 47 (3) 393-399; DOI: 10.1104/pp.47.3.393

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Photomorphogenesis in Arabidopsis thaliana (L.) Heynh
J. A. M. Brown, W. H. Klein
Plant Physiology Mar 1971, 47 (3) 393-399; DOI: 10.1104/pp.47.3.393
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 47, Issue 3
March 1971
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire