Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Metabolic and Physical Control of Cell Elongation Rate

In Vivo Studies in Nitella

P. B. Green, R. O. Erickson, J. Buggy
P. B. Green
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. O. Erickson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Buggy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 1971. DOI: https://doi.org/10.1104/pp.47.3.423

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1971 American Society of Plant Biologists

Abstract

Several levels of control of elongation rate are revealed through the detailed study of responses of the Nitella internode to abrupt shifts in turgor. The immediate response, which apparently reflects the physical state of the cell, is approximately described by the equation r = (P — Y)m where r is rate, P is pressure, Y is the wall's yielding threshold, and m is related to the wall's apparent fluidity (reciprocal viscosity). Because P and Y are in the range 5 to 6 atmospheres, and (P — Y) is roughly 0.2 atmosphere, elongation rate is initially extremely sensitive to changes in P. A small step-down in turgor (0.7 atmosphere) stops growth, and a similar rise greatly accelerates it. These initial responses are, however, soon (15 minutes) compensated by changes in Y. An apparent metabolism-dependent reaction (azide-sensitive) lowers Y; strain hardening (azide-insensitive) raises it. These two opposing processes, acting on Y, serve as a governor on (P — Y), tending to maintain it at a given value despite changes in P. This ability to compensate is itself a function of turgor. Turgor step-downs are less and less well compensated, leading to lower rate, as turgor falls from 5 atmospheres to about 2 atmospheres where growth appears not to resume. This is the lowest attainable yield value, Y1. The turgor dependency of compensation reflects a turgor requirement of the Y-lowering (“wall-softening”) process. Thus the relation between steady state, rs, and turgor is an indirect one, derived from time-dependent alterations of the cell wall. This relationship superficially resembles the instantaneously valid one in that, roughly, rs = (P — Y1)ms. Y1 and ms, however, have much lower values than Y and m. The duality of the elongation rate versus turgor relation and the prominent role of Y in regulating rate are the major features of growth control in Nitella.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Metabolic and Physical Control of Cell Elongation Rate
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Metabolic and Physical Control of Cell Elongation Rate
P. B. Green, R. O. Erickson, J. Buggy
Plant Physiology Mar 1971, 47 (3) 423-430; DOI: 10.1104/pp.47.3.423

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Metabolic and Physical Control of Cell Elongation Rate
P. B. Green, R. O. Erickson, J. Buggy
Plant Physiology Mar 1971, 47 (3) 423-430; DOI: 10.1104/pp.47.3.423
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 47, Issue 3
March 1971
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire