Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Mode of Action of the Toxin from Pseudomonas phaseolicola

II. Mechanism of Inhibition of Bean Ornithine Carbamoyltransferase

Leslie Q. Tam, Suresh S. Patil
Leslie Q. Tam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Suresh S. Patil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1972. DOI: https://doi.org/10.1104/pp.49.5.808

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1972 American Society of Plant Biologists

Abstract

A chlorosis-inducing toxin of Pseudomonas phaseolicola was examined for inhibition of ornithine carbamoyltransferease prepared from acetone powder of bean (Phaseolus vulgaris L.) plants. The enzyme has a pH optimum at 8.5, involves a ternary complex reaction mechanism, and shows Michaelis constants of 5.0 mm and 1.7 mm for ornithine and carbamoylphosphate, respectively. Assuming reversible catalysis, Michaelas constants of 11 mm and 3.3 mm are calculated for citrulline and arsenate. Toxin induces allosteric competitive inhibition in relation to carbamoylphosphate and a noncompetitive mode of inhibition in relation to ornithine, except at high toxin concentrations where uncompetitive inhibition is observed. In the backward assay, competitive inhibition is observed for both arsenate and citrulline. Inhibition is increased with preincubation time and shows saturation kinetics with regard to toxin concentration.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mode of Action of the Toxin from Pseudomonas phaseolicola
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mode of Action of the Toxin from Pseudomonas phaseolicola
Leslie Q. Tam, Suresh S. Patil
Plant Physiology May 1972, 49 (5) 808-812; DOI: 10.1104/pp.49.5.808

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Mode of Action of the Toxin from Pseudomonas phaseolicola
Leslie Q. Tam, Suresh S. Patil
Plant Physiology May 1972, 49 (5) 808-812; DOI: 10.1104/pp.49.5.808
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 49, Issue 5
May 1972
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire