Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Sequence Arrangement in Satellite DNA from the Muskmelon

Arnold J. Bendich, William C. Taylor
Arnold J. Bendich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William C. Taylor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published April 1977. DOI: https://doi.org/10.1104/pp.59.4.604

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1977 American Society of Plant Biologists

Abstract

Two fractions of a satellite DNA from the muskmelon (Cucumis melo L.) isolated as a unimodal peak from CsCl gradients, differ in melting properties and complexity as estimated by reassociation kinetics. At 49.8 C, all of the low melting fraction was denatured and all of the high melting fraction was native. There were almost no partially denatured molecules detected in the electron microscope at this temperature. This observation provides direct evidence that the two fractions are not closely linked. We conclude that satellite I, the high tm, low complexity fraction, exists as a 600-nucleotide sequence in blocks of at least 67 tandem repeats. Since the complexity of the low melting fraction, satellite II, is greater than the size of the molecules in our assay, we can only say that the minimum size of each unit of satellite II is 2.5 × 107 daltons. It is unlikely that any spacer sequences are interspersed with either satellite.

Sequences homologous to those of satellite I were also shown to be present as a minor fraction on 4900 nucleotide pair fragments with main band DNA density. These long main band fragments probably contain in addition at least two repeated sequence elements unrelated to satellite I since they aggregate (form large network structures) when reassociated. Coaggregation of sheared 3H-satellite I with long main band DNA could not be attributed to contamination of main band with long satellite DNA. We interpret the results as an observation of a recently created family of tandemly repeating sequences whose members are beginning to be scattered throughout the genome.

We discuss how the aggregation technique may be generally useful for assessing linkage between a minor and a major DNA fraction when both fractions may be present in the initial DNA preparation. Applications for the technique include the search for DNA sequences in the nucleus which are homologous with chloroplast DNA and for Agrobacterium tumefaciens DNA in the nuclei of plant cells transformed to the tumor phenotype by the bacterium.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sequence Arrangement in Satellite DNA from the Muskmelon
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Sequence Arrangement in Satellite DNA from the Muskmelon
Arnold J. Bendich, William C. Taylor
Plant Physiology Apr 1977, 59 (4) 604-609; DOI: 10.1104/pp.59.4.604

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Sequence Arrangement in Satellite DNA from the Muskmelon
Arnold J. Bendich, William C. Taylor
Plant Physiology Apr 1977, 59 (4) 604-609; DOI: 10.1104/pp.59.4.604
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 59, Issue 4
April 1977
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire