Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Light Acclimation During and After Leaf Expansion in Soybean

James A. Bunce, David T. Patterson, Mary M. Peet, Randall S. Alberte
James A. Bunce
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David T. Patterson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary M. Peet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randall S. Alberte
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1977. DOI: https://doi.org/10.1104/pp.60.2.255

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1977 American Society of Plant Biologists

Abstract

Soybean plants (Glycine max var. Ransom) were grown at light intensities of 850 and 250 μeinsteins m−2 sec−1 of photosynthetically active radiation. A group of plants was shifted from each environment into the other environment 24 hours before the beginning of the experiment. Net photosynthetic rates and stomatal conductances were measured at 2,000 and 100 μeinsteins m−2 sec−1 photosynthetically active radiation on the 1st, 2nd, and 5th days of the experiment to determine the time course of photosynthetic light adaptation. The following factors were also measured: dark respiration, leaf water potential, leaf thickness, internal surface area per external surface area, chlorophyll content, photosynthetic unit size and number, specific leaf weight, and activities of malate dehydrogenase, and glycolate oxidase. Comparisons were made with plants maintained in either 850 or 250 μeinsteins m−2 sec−1 environments. Changes in photosynthesis, stomatal conductance, leaf anatomy, leaf water potential, photosynthetic unit size, and glycolate oxidase activity occurred upon altering the light environment, and were complete within 1 day, whereas chlorophyll content, numbers of photosynthetic units, specific leaf weight, and malate dehydrogenase activity showed slower changes. Differences in photosynthetic rates at high light were largely accounted for by internal surface area differences with low environmental light associated with low internal area and low photosynthetic rate. An exception to this was the fact that plants grown at 250 μeinsteins m−2 sec−1 then switched to 850 μeinsteins m−2 sec−1 showed lower photosynthesis at high light than any other treatment. This was associated with higher glycolate oxidase and malate dehydrogenase activity. Photosynthesis at low light was higher in plants kept at or switched to the lower light environment. This increased rate was associated with larger photosynthetic unit size, and lower dark respiration and malate dehydrogenase activity. Both anatomical and physiological changes with environmental light occurred even after leaf expansion was complete and both were important in determining photosynthetic response to light.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Light Acclimation During and After Leaf Expansion in Soybean
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Light Acclimation During and After Leaf Expansion in Soybean
James A. Bunce, David T. Patterson, Mary M. Peet, Randall S. Alberte
Plant Physiology Aug 1977, 60 (2) 255-258; DOI: 10.1104/pp.60.2.255

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Light Acclimation During and After Leaf Expansion in Soybean
James A. Bunce, David T. Patterson, Mary M. Peet, Randall S. Alberte
Plant Physiology Aug 1977, 60 (2) 255-258; DOI: 10.1104/pp.60.2.255
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 60, Issue 2
August 1977
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire