Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Influence of pH upon the Warburg Effect in Isolated Intact Spinach Chloroplasts

II. Interdependency of Glycolate Synthesis upon pH and Calvin Cycle Intermediate Concentration in the Absence of Carbon Dioxide Photoassimilation

Yoke Wah Kow, J. Michael Robinson, Martin Gibbs
Yoke Wah Kow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Michael Robinson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin Gibbs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published October 1977. DOI: https://doi.org/10.1104/pp.60.4.492

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1977 American Society of Plant Biologists

Abstract

The light-dependent synthesis of glycolate derived from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate was studied in the intact spinach (Spinacia oleracea) chloroplasts in the absence of CO2. Glycolate yield increased with an elevation of O2, pH, and the concentration of the phosphorylated compound supplied. No pH optimum was observed as the pH was increased from 7.4 to 8.5. The average maximal rate of glycolate synthesis was 50 μmoles per milligram chlorophyll per hour while the highest rate observed was 92 with 2.5 mm fructose 1,6-diphosphate in 100% O2. The highest yields of glycolate synthesized from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate were 0.14, 0.24, and 0.30, respectively, on a molar basis.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Influence of pH upon the Warburg Effect in Isolated Intact Spinach Chloroplasts
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Influence of pH upon the Warburg Effect in Isolated Intact Spinach Chloroplasts
Yoke Wah Kow, J. Michael Robinson, Martin Gibbs
Plant Physiology Oct 1977, 60 (4) 492-495; DOI: 10.1104/pp.60.4.492

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Influence of pH upon the Warburg Effect in Isolated Intact Spinach Chloroplasts
Yoke Wah Kow, J. Michael Robinson, Martin Gibbs
Plant Physiology Oct 1977, 60 (4) 492-495; DOI: 10.1104/pp.60.4.492
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 60, Issue 4
October 1977
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire