Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Cell-density-dependent Changes in the Metabolism of Chloronema Cell Cultures

I. Relationship between Cell Density and Enzymic Activities

Shobhona Sharma, Radheshyam K. Jayaswal, Man Mohan Johri
Shobhona Sharma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Radheshyam K. Jayaswal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Man Mohan Johri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published July 1979. DOI: https://doi.org/10.1104/pp.64.1.154

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1979 American Society of Plant Biologists

Abstract

In the growing chloronema cell suspension cultures of the moss Funaria hygrometrica Hedw., activities of several enzymes have been found to be cell-density-dependent. Cyclic nucleotide phosphodiesterase (cNPDE), nitrate reductase (NR), and protein kinase showed highest activity at a low cell density (1 to 2 milligrams per milliliter) while indoleacetic acid (IAA) oxidase and peroxidase were highest at a high cell density (>10 milligrams per milliliter). 3′-Nucleotidase and the glycolytic enzymes (aldolase, hexokinase, phosphofructokinase, phosphoglucoisomerase, pyruvate kinase, and triose phosphate isomerase) showed no significant dependence on the cell density. Alternatively, if the NR and peroxidase activities were determined as a function of time in batch cultures, their levels were maximal 60 to 70 and 320 hours after subculture, respectively, the corresponding cell densities being 1 to 2 and 23 milligrams per milliliter. The relationship between cell density and NR and peroxidase activities is the same, whether these enzymes are measured in batch cultures during a growth cycle or in the cells cultured at different initial inoculum densities for a constant time. Conventionally enzymic changes have been correlated with growth phases; however, it is felt that the pattern of enzymic activities can also be interpreted as cell-density-dependent.

In moss protonema, the dependence of cNPDE, IAA oxidase, and peroxidase on cell density may play an important role in modulating the endogenous levels of IAA and cAMP, both of which regulate the differentiation of specific cell types (Johri and Desai 1973 Nature New Biol 245: 223-224; and Handa and Johri 1976 Nature 259: 480-482).

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cell-density-dependent Changes in the Metabolism of Chloronema Cell Cultures
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cell-density-dependent Changes in the Metabolism of Chloronema Cell Cultures
Shobhona Sharma, Radheshyam K. Jayaswal, Man Mohan Johri
Plant Physiology Jul 1979, 64 (1) 154-158; DOI: 10.1104/pp.64.1.154

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Cell-density-dependent Changes in the Metabolism of Chloronema Cell Cultures
Shobhona Sharma, Radheshyam K. Jayaswal, Man Mohan Johri
Plant Physiology Jul 1979, 64 (1) 154-158; DOI: 10.1104/pp.64.1.154
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 64, Issue 1
July 1979
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire