Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Limiting Factors in Photosynthesis

I. USE OF IRON STRESS TO CONTROL PHOTOCHEMICAL CAPACITY IN VIVO

Norman Terry
Norman Terry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published January 1980. DOI: https://doi.org/10.1104/pp.65.1.114

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1980 American Society of Plant Biologists

Abstract

The possibility of using Fe stress as an experimental tool in the study of limiting factors was explored. Results show that Fe stress decreased the chlorophyll (Chl) a, Chl b, carotene, and xanthophyll content of leaves of sugar beets (Beta vulgaris L.) and that the maximum rate of photosynthetic CO2 uptake (Pmax) per unit area was linearly related to Chl (a + b) per unit area. Measurements of noncyclic ATP formation by isolated chloroplasts at light saturation indicate that photosynthetic electron transport capacity decreased concomitantly with pigment content under Fe stress.

Iron stress decreased Chl per chloroplast but had no effect on the number of leaf cells per unit area, average leaf cell volume, number of chloroplasts per unit area, or leaf soluble protein per unit area. Average chloroplast volume, protein N per chloroplast, and ribulose bisphosphate carboxylase activity were diminished by Fe stress but to a lesser extent than Chl per chloroplast. The reduction in pigment concentration with Fe stress led to a relatively small decrease in light absorption, the fraction of incident light absorbed remaining high (49%) even at very low leaf Chl contents. There was no apparent change in the quantum yield of attached leaves at low irradiances, but at high irradiances, the capacity to convert absorbed light to chemical energy was greatly diminished in Fe-stressed leaves.

The results suggest: (a) that Pmax per unit area are decreased linearly with Chl per unit area because of a decrease in photochemical capacity rather than a change in light absorption; and (b) that the effect of Fe stress may be sufficiently specific for it to be used as an experimental tool for the control and study of photochemical capacity in vivo.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Limiting Factors in Photosynthesis
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Limiting Factors in Photosynthesis
Norman Terry
Plant Physiology Jan 1980, 65 (1) 114-120; DOI: 10.1104/pp.65.1.114

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Limiting Factors in Photosynthesis
Norman Terry
Plant Physiology Jan 1980, 65 (1) 114-120; DOI: 10.1104/pp.65.1.114
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 65, Issue 1
January 1980
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire