Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Effect of Light Intensity during Growth on Photoinhibition of Intact Attached Bean Leaflets

Steve B. Powles, Christa Critchley
Steve B. Powles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christa Critchley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1980. DOI: https://doi.org/10.1104/pp.65.6.1181

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1980 American Society of Plant Biologists

Abstract

In the study reported here, two different photoinhibitory phenomena were compared within a single plant species. Bean plants were grown in three different light intensities to simulate sun and shade environments. The effects of photoinhibitory treatments on in vivo CO2 assimilation rates and in vitro chloroplast electron transport reactions were investigated and the extent to which carbon metabolism served to prevent photoinhibition was characterized. It was shown that the photoinhibition which follows exposure of intact leaflets of low light-grown bean plants to high light intensity in normal air is essentially similar to that which occurs when leaflets of plants grown in full sunlight are illuminated in the absence of CO2 at low O2 partial pressures.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effect of Light Intensity during Growth on Photoinhibition of Intact Attached Bean Leaflets
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Effect of Light Intensity during Growth on Photoinhibition of Intact Attached Bean Leaflets
Steve B. Powles, Christa Critchley
Plant Physiology Jun 1980, 65 (6) 1181-1187; DOI: 10.1104/pp.65.6.1181

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Effect of Light Intensity during Growth on Photoinhibition of Intact Attached Bean Leaflets
Steve B. Powles, Christa Critchley
Plant Physiology Jun 1980, 65 (6) 1181-1187; DOI: 10.1104/pp.65.6.1181
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 65, Issue 6
June 1980
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire