Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherShort Communication
You have accessRestricted Access

Phytochrome Modifies Blue-light-induced Electrical Changes in Corn Coleoptiles

Richard H. Racusen, Arthur W. Galston
Richard H. Racusen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arthur W. Galston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 1980. DOI: https://doi.org/10.1104/pp.66.3.534

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1980 American Society of Plant Biologists

Abstract

Unilateral blue light administered to corn coleoptile segments produces no alteration of transmembrane potential on the light side, and only a small and slow hyperpolarization on the dark side. Red light causes a 5-15 millivolt depolarization in cells on the light side causes and somewhat smaller effects on the dark side. Blue given after red causes a rapid hyperpolarization on both sides of the coleoptile. The effect of the potentiating red preirradiation is probably due to phytochrome, being largely abolished by far-red given after red, but before the blue light. The effect of prior red irradiation decays in the dark, showing a half-time of about 45 minutes at room temperature. This rapid cooperativity between phytochrome and the phototropic pigment may indicate a common locale, possibly in a membrane.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Phytochrome Modifies Blue-light-induced Electrical Changes in Corn Coleoptiles
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Phytochrome Modifies Blue-light-induced Electrical Changes in Corn Coleoptiles
Richard H. Racusen, Arthur W. Galston
Plant Physiology Sep 1980, 66 (3) 534-535; DOI: 10.1104/pp.66.3.534

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Phytochrome Modifies Blue-light-induced Electrical Changes in Corn Coleoptiles
Richard H. Racusen, Arthur W. Galston
Plant Physiology Sep 1980, 66 (3) 534-535; DOI: 10.1104/pp.66.3.534
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 66, Issue 3
September 1980
  • Table of Contents
  • Index by author

More in this TOC Section

  • Lysine-Ketoglutarate Reductase Activity in Developing Maize Endosperm
  • Carbon and Nitrogen Limitations on Soybean Seedling Development
  • Energy Supply for Stomatal Opening in Epidermal Strips of Commelina benghalensis
Show more Short Communication

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire