Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Uptake and Distribution of N-Phosphonomethylglycine in Sugar Beet Plants

Judy A. Gougler, Donald R. Geiger
Judy A. Gougler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald R. Geiger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 1981. DOI: https://doi.org/10.1104/pp.68.3.668

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1981 American Society of Plant Biologists

Abstract

Glyphosate (N-phosphonomethylglycine) was readily transported in sugar beet plants (Beta vulgaris L., Klein E type, monogerm). Concentrations in sink leaves reached 2.5 to 13.7 micromolar in 10 hours from a 15 millimolar solution supplied to one mature leaf. Distribution of glyphosate followed that of [3H]sucrose used as a marker for materials transported by phloem, indicating that this is the primary means for distribution of glyphosate. Possible mechanisms of entry into the sieve tubes were evaluated using isolated leaf discs. Concentration dependence of uptake and kinetics of exodiffusion from tissue indicate a passive, nonfacilitated mechanism. Uptake was not affected by pH, eliminating the passive, weak acid mechanism. Permeability of the plasmalemma to glyphosate was calculated as 1.7 × 10−10 meters per second. This characteristic would allow slow entry and exit from the phloem, and together with other physiological parameters of the plant, is postulated to allow accumulation and transport in the phloem.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Uptake and Distribution of N-Phosphonomethylglycine in Sugar Beet Plants
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Uptake and Distribution of N-Phosphonomethylglycine in Sugar Beet Plants
Judy A. Gougler, Donald R. Geiger
Plant Physiology Sep 1981, 68 (3) 668-672; DOI: 10.1104/pp.68.3.668

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Uptake and Distribution of N-Phosphonomethylglycine in Sugar Beet Plants
Judy A. Gougler, Donald R. Geiger
Plant Physiology Sep 1981, 68 (3) 668-672; DOI: 10.1104/pp.68.3.668
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 68, Issue 3
September 1981
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire