Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Leucine Transport in Cells Isolated from Cold-Hardened and Nonhardened Winter Rye

Leslie R. Barran, Jas Singh
Leslie R. Barran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jas Singh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published April 1982. DOI: https://doi.org/10.1104/pp.69.4.793

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1982 American Society of Plant Biologists

Abstract

The properties of the leucine transport systems of cells isolated from dark-grown cold-hardened and nonhardened winter rye (Secale cereale L. cv. Puma) epicotyls were remarkably similar. After 1 hour of incubation, leucine was accumulated in the cells 80- to 100-fold above that of the external medium, but the transported leucine was not metabolized. Approximately one-third of the accumulated leucine was present in the vacuole after 40 minutes of incubation. At 25°C, efflux of leucine from the vacuole was 6 to 10 times slower than it was from the cytoplasm, while at 5°C efflux from the cells was inhibited.

The apparent Km and Vmax for leucine uptake for both types of cells were of the order of 20 to 60 micromolar and 0.5 to 1.3 nanomoles per minute per 106 cells. The pH and temperature optima for both types of cells were 5 and 25°C, respectively. The leucine transport system for these cells was relatively specific for amino acids lacking either bulky or charged groups on the amino acid side chains.

Arrhenius plots for leucine uptake by hardened and nonhardened cells showed discontinuities at 13°C, and the energies of activation were similar. The results suggests that biochemical changes which occur in rye cells upon cold hardening did not result in an observable perturbation of the properties of the leucine transport system.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Leucine Transport in Cells Isolated from Cold-Hardened and Nonhardened Winter Rye
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Leucine Transport in Cells Isolated from Cold-Hardened and Nonhardened Winter Rye
Leslie R. Barran, Jas Singh
Plant Physiology Apr 1982, 69 (4) 793-797; DOI: 10.1104/pp.69.4.793

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Leucine Transport in Cells Isolated from Cold-Hardened and Nonhardened Winter Rye
Leslie R. Barran, Jas Singh
Plant Physiology Apr 1982, 69 (4) 793-797; DOI: 10.1104/pp.69.4.793
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 69, Issue 4
April 1982
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire