Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Light-Induced Increase in the Number and Activity of Ribosomes Bound to Pea Chloroplast Thylakoids in Vivo

Leonard E. Fish, Andre T. Jagendorf
Leonard E. Fish
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andre T. Jagendorf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published April 1982. DOI: https://doi.org/10.1104/pp.69.4.814

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1982 American Society of Plant Biologists

Abstract

Within 8 to 10 minutes of illumination, chloroplast thylakoids of pea (Pisum sativum) became enriched 30 to 100% in ribosomes bound by nascent chains. Following (or, in some experiments, coincident with) this apprarent redistribution was a 25 to 65% increase in the total bound ribosome population, which was then maintained at this higher level during the normal light period. On transfer of plants to darkness, the bound ribosome population decreased to the lower dark level. White, blue (400 to 520 nanometers), and orange (545 to 690 nanometers) light were all effective in producing an increase in the bound ribosome population. The level of bound ribosomes in the oldest leaves of 16-day-old plants was 15-fold less than in the still-maturing leaf but was still increased by illumination.

In vivo experiments with chloramphenicol and lincomycin indicated a requirement for protein synthesis by the 70S ribosomes both for the light-induced shift to the population bound by nascent chains and for the increase in the total thylakoid-bound population. When thylakoids from plants in darkness or exposed to light for increasing periods were incubated in an Eschericia coli cell-free protein synthesizing system, 15 minutes of prior illumination in vivo produced a 60% increase in [3H]leucine incorporation. This stimulation preceded the increase in total bound ribosomes but corresponded in time to observed increases in the ribosomes bound by nascent chains.

A light intensity of 100 micromoles per meter2 per second, but not 25 micromoles per meter2 per second, caused a significant increase in bound ribosomes over a 30-minute period. Strong inhibition in vivo by 3′,4′-dichlorophenyl-1, 1-dimethylurea suggests that noncyclic electron flow is essential for light-induced ribosome redistribution.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Light-Induced Increase in the Number and Activity of Ribosomes Bound to Pea Chloroplast Thylakoids in Vivo
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Light-Induced Increase in the Number and Activity of Ribosomes Bound to Pea Chloroplast Thylakoids in Vivo
Leonard E. Fish, Andre T. Jagendorf
Plant Physiology Apr 1982, 69 (4) 814-824; DOI: 10.1104/pp.69.4.814

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Light-Induced Increase in the Number and Activity of Ribosomes Bound to Pea Chloroplast Thylakoids in Vivo
Leonard E. Fish, Andre T. Jagendorf
Plant Physiology Apr 1982, 69 (4) 814-824; DOI: 10.1104/pp.69.4.814
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 69, Issue 4
April 1982
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire