Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Isozymes of the Glycolytic Enzymes in Endosperm from Developing Castor Oil Seeds

Jan A. Miernyk, David T. Dennis
Jan A. Miernyk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David T. Dennis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published April 1982. DOI: https://doi.org/10.1104/pp.69.4.825

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1982 American Society of Plant Biologists

Abstract

Ion filtration chromatography on diethylaminoethyl-Sephadex A-25 has been used to separate two isozymes each of triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, enolase, and phosphoglycerate mutase from homogenates of developing castor oil (Ricinus communis L. cv. Baker 296) seeds. Crude plastid fractions, prepared by differential centrifugation, were enriched in one of the isozymes, whereas the cytosolic fractions were enriched in the other. These data (and data published previously) indicate that plastids from developing castor oil seeds have a complete glycolytic pathway and are capable of conversion of hexose phosphate to pyruvate for fatty acid synthesis. The enzymes of this pathway in the plastids are isozymes of the corresponding enzymes located in the cytosol.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Isozymes of the Glycolytic Enzymes in Endosperm from Developing Castor Oil Seeds
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Isozymes of the Glycolytic Enzymes in Endosperm from Developing Castor Oil Seeds
Jan A. Miernyk, David T. Dennis
Plant Physiology Apr 1982, 69 (4) 825-828; DOI: 10.1104/pp.69.4.825

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Isozymes of the Glycolytic Enzymes in Endosperm from Developing Castor Oil Seeds
Jan A. Miernyk, David T. Dennis
Plant Physiology Apr 1982, 69 (4) 825-828; DOI: 10.1104/pp.69.4.825
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 69, Issue 4
April 1982
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire