Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherArticles
You have accessRestricted Access

Gas Chromatography-Mass Spectroscopy Identification of 1-Aminocyclopropane-1-carboxylic Acid in Compressionwood Vascular Cambium of Pinus contorta Dougl.

Rodney A. Savidge, Gerard M. C. Mutumba, James K. Heald, Philip F. Wareing
Rodney A. Savidge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerard M. C. Mutumba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James K. Heald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip F. Wareing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1983. DOI: https://doi.org/10.1104/pp.71.2.434

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1983 American Society of Plant Biologists

Abstract

Following cation and anion exchange chromatography, 1-aminocyclopropane-1-carboxylic acid (ACC) was converted to the 2,4-dinitrophenyl derivative and then purified by high-performance liquid chromatography (HPLC). After three HPLC steps, endogenous ACC was identified by GCMS in the vascular cambium on the lower side of Pinus contorta Dougl. ssp. latifolia branches in association with compressionwood differentiation, but ACC was not detected in the opposite wood cambial region on the upper sides of the same branches.

The possibility that ACC and ethylene have physiological roles in cambial activity and compressionwood tracheid differentiation is discussed.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gas Chromatography-Mass Spectroscopy Identification of 1-Aminocyclopropane-1-carboxylic Acid in Compressionwood Vascular Cambium of Pinus contorta Dougl.
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Gas Chromatography-Mass Spectroscopy Identification of 1-Aminocyclopropane-1-carboxylic Acid in Compressionwood Vascular Cambium of Pinus contorta Dougl.
Rodney A. Savidge, Gerard M. C. Mutumba, James K. Heald, Philip F. Wareing
Plant Physiology Feb 1983, 71 (2) 434-436; DOI: 10.1104/pp.71.2.434

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Gas Chromatography-Mass Spectroscopy Identification of 1-Aminocyclopropane-1-carboxylic Acid in Compressionwood Vascular Cambium of Pinus contorta Dougl.
Rodney A. Savidge, Gerard M. C. Mutumba, James K. Heald, Philip F. Wareing
Plant Physiology Feb 1983, 71 (2) 434-436; DOI: 10.1104/pp.71.2.434
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 71, Issue 2
February 1983
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire