Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Anion-Sensitive, H+-Pumping ATPase in Membrane Vesicles from Oat Roots

Kathleen A. Churchill, Heven Sze
Kathleen A. Churchill
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heven Sze
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 1983. DOI: https://doi.org/10.1104/pp.71.3.610

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1983 American Society of Plant Biologists

Abstract

H+-pumping ATPases were detected in microsomal vesicles of oat (Avena sativa L. var Lang) roots using [14C]methylamine distribution or quinacrine fluorescent quenching. Methylamine (MeA) accumulation into vesicles and quinacrine quench were specifically dependent on Mg,ATP. Both activities reflected formation of a proton gradient (ΔpH) (acid inside) as carbonyl cyanide m-chlorophenylhydrazone, nigericin (in the presence of K+), or gramicidin decreased MeA uptake or increased quinacrine fluorescence. The properties of H+ pumping as measured by MeA uptake were characterized. The Kmapp for ATP was about 0.1 millimolar. Mg,GTP and Mg, pyrophosphate were 19% and 30% as effective as Mg,ATP. MeA uptake was inhibited by N,N′-dicyclohexylcarbodiimide and was mostly insensitive to oligomycin, vanadate, or copper. ATP-dependent MeA was stimulated by anions with decreasing order of potency of Cl− > Br− > NO3− > SO42−, iminodiacetate, benzene sulfonate. Anion stimulation of H+ pumping was caused in part by the ability of permeant anions to dissipate the electrical potential and in part by a specific requirement of Cl− by a H+ -pumping ATPase. A pH gradient, probably caused by a Donnan potential, could be dissipated by K+ in the presence or absence of ATP. MeA uptake was enriched in vesicles of relatively low density and showed a parallel distribution with vanadate-insensitive ATPase activity on a continuous dextran gradient. ΔpH as measured by quinacrine quench was partially vanadate-sensitive. These results show that plant membranes have at least two types of H+ -pumping ATPases. One is vanadate-sensitive and probably enriched in the plasma membrane. One is vanadate-resistant, anion-sensitive and has many properties characteristic of a vacuolar ATPase. These results are consistent with the presence of electrogenic H+ pumps at the plasma membrane and tonoplast of higher plant cells.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Anion-Sensitive, H+-Pumping ATPase in Membrane Vesicles from Oat Roots
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Anion-Sensitive, H+-Pumping ATPase in Membrane Vesicles from Oat Roots
Kathleen A. Churchill, Heven Sze
Plant Physiology Mar 1983, 71 (3) 610-617; DOI: 10.1104/pp.71.3.610

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Anion-Sensitive, H+-Pumping ATPase in Membrane Vesicles from Oat Roots
Kathleen A. Churchill, Heven Sze
Plant Physiology Mar 1983, 71 (3) 610-617; DOI: 10.1104/pp.71.3.610
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 71, Issue 3
March 1983
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire