Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Role of Inosine Monophosphate Oxidoreductase in the Formation of Ureides in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata L. Walp.)

Barry J. Shelp, Craig A. Atkins
Barry J. Shelp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Craig A. Atkins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1983. DOI: https://doi.org/10.1104/pp.72.4.1029

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1983 American Society of Plant Biologists

Abstract

Cell-free extracts from nodules of cowpea (Vigna unguiculata L. (Walp.) cv Caloona:Rhizobium strain CB756) prepared in the presence of 15% (v/v) glycerol showed high rates (30 to 60 nanomoles NAD reduced per minute per gram fresh weight nodule) of inosine monophosphate oxidoreductase (EC 1.2.1.14) activity. The enzyme was labile (half-life of activity less than 3 hours) but could be stabilized for up to 18 hours by inclusion of the substrates NAD and inosine monophosphate in the breaking media. Activity showed a broad pH optimum between 8.5 and 9.5, had an apparent Km (inosine monophosphate) of 4 and 12 micromolar at pH 7.5 and 9.0, respectively, and was largely (96%) associated with the plant cell cytosol fraction of the nodule.

Metabolism of [8-14C]inosine monophosphate and [1-14C]glycine by the cell-free system showed two pathways for purine base production from inosine monophosphate, one via xanthosine monophosphate, xanthosine, and xanthine, the other via inosine and hypoxanthine. The proportion of inosine monophosphate utilized by inosine monophosphate oxidoreductase and the xanthine-based pathway was increased from 30% at 0.5 millimolar to 80% at 0.01 millimolar inosine monophosphate. The data are interpreted to indicate that in vivo inosine monophosphate oxidation rather than dephosphorylation is the predominant metabolic route leading to ureide synthesis and that inosine monophosphate provides the link between de novo purine nucleotide synthesis in the plastid and ureide production in the plant cell cytosol.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Role of Inosine Monophosphate Oxidoreductase in the Formation of Ureides in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata L. Walp.)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Role of Inosine Monophosphate Oxidoreductase in the Formation of Ureides in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata L. Walp.)
Barry J. Shelp, Craig A. Atkins
Plant Physiology Aug 1983, 72 (4) 1029-1034; DOI: 10.1104/pp.72.4.1029

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Role of Inosine Monophosphate Oxidoreductase in the Formation of Ureides in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata L. Walp.)
Barry J. Shelp, Craig A. Atkins
Plant Physiology Aug 1983, 72 (4) 1029-1034; DOI: 10.1104/pp.72.4.1029
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 72, Issue 4
August 1983
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire