Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Solutes Contributing to Osmotic Adjustment in Cultured Plant Cells Adapted to Water Stress

Sangita Handa, Ray A. Bressan, Avtar K. Handa, Nicholas C. Carpita, Paul M. Hasegawa
Sangita Handa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ray A. Bressan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Avtar K. Handa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicholas C. Carpita
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul M. Hasegawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published November 1983. DOI: https://doi.org/10.1104/pp.73.3.834

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1983 American Society of Plant Biologists

Abstract

Osmotic adjustment was studied in cultured cells of tomato (Lycopersicon esculentum Mill cv VFNT-Cherry) adapted to different levels of external water potential ranging from −4 bar to −28 bar. The intracellular concentrations of reducing sugars, total free amino acids, proline, malate, citrate, quaternary ammonium compounds, K+, NO3−, Na+, and Cl− increased with decreasing external water potential. At any given level of adaptation, the maximum contribution to osmotic potential was from reducing sugars followed by potassium ions. The sucrose levels in the cells were 3- to 8-fold lower than reducing sugar levels and did not increase beyond those observed in cells adapted to −16 bar water potential. Concentrations of total free amino acids were 4- to 5-fold higher in adapted cells. Soluble protein levels declined in the adapted cell lines, but the total reduced nitrogen was not significantly different after adaptation. Uptake of nitrogen (as NH4+ or NO3−) from the media was similar for adapted and unadapted cells. Although the level of quaternary ammonium compounds was higher in the nonadapted cells than that of free proline, free proline increased as much as 500-fold compared to only a 2- to 3-fold increase observed for quaternary ammonium compounds. Although osmotic adjustment after adaptation was substantial (up to −36 bar), fresh weight (volume increase) was restricted by as much as 50% in the adapted cells. Altered metabolite partitioning was evidenced by an increase in the soluble sugars and soluble nitrogen in adapted cells which occurred at the expense of incorporation of sugar into cell walls and nitrogen into protein. Data indicate that the relative importance of a given solute to osmotic adjustment may change depending on the level of adaptation.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Solutes Contributing to Osmotic Adjustment in Cultured Plant Cells Adapted to Water Stress
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Solutes Contributing to Osmotic Adjustment in Cultured Plant Cells Adapted to Water Stress
Sangita Handa, Ray A. Bressan, Avtar K. Handa, Nicholas C. Carpita, Paul M. Hasegawa
Plant Physiology Nov 1983, 73 (3) 834-843; DOI: 10.1104/pp.73.3.834

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Solutes Contributing to Osmotic Adjustment in Cultured Plant Cells Adapted to Water Stress
Sangita Handa, Ray A. Bressan, Avtar K. Handa, Nicholas C. Carpita, Paul M. Hasegawa
Plant Physiology Nov 1983, 73 (3) 834-843; DOI: 10.1104/pp.73.3.834
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 73, Issue 3
November 1983
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire