Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Photosynthetic Gene Expression and Cellular Differentiation in Developing Maize Leaves

Belinda Martineau, William C. Taylor
Belinda Martineau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William C. Taylor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1985. DOI: https://doi.org/10.1104/pp.78.2.399

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1985 American Society of Plant Biologists

Abstract

We have exploited the positional gradient of cellular differentiation in Zea mays leaves to study the accumulation of mRNAs encoding subunits of the two CO2-fixing enzymes and the major chlorophyll-binding protein. These three proteins are differentially compartmentalized in the two photosynthetically active cell types of the leaf. Previous studies have shown that accumulation of the two carboxylases commences 2 to 4 cm from the base of the leaf (Mayfield SP, WC Taylor Planta 161: 481-486) at a position where bundle sheath and mesophyll cells show morphological evidence of maturation. The light-harvesting chlorophyll a/b protein accumulates progressively from the leaf base, as does its mRNA, in spite of its localization in mesophyll cells after cellular differentiation occurs. While small quantities of phosphoenolpyruvate carboxylase mRNA are detectable in the basal region of the leaf, significant mRNA accumulation is coincident with that of the polypeptide at 4 to 6 cm from the leaf base, the region where bundle sheath and mesophyll cells exhibit fully differentiated morphologies. mRNAs encoding the small and large subunits of ribulose 1,5-bisphosphate carboxylase accumulate to significant levels before bundle sheath cells are fully differentiated and before their polypeptides are detectable. Cytological examination indicates that this is the position at which the maturation of intermediate vascular bundles is first evident. Cytosolically localized small subunit mRNA and chloroplast-localized large subunit mRNA are complexed with polyribosomes at all positions of the leaf.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Photosynthetic Gene Expression and Cellular Differentiation in Developing Maize Leaves
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Photosynthetic Gene Expression and Cellular Differentiation in Developing Maize Leaves
Belinda Martineau, William C. Taylor
Plant Physiology Jun 1985, 78 (2) 399-404; DOI: 10.1104/pp.78.2.399

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Photosynthetic Gene Expression and Cellular Differentiation in Developing Maize Leaves
Belinda Martineau, William C. Taylor
Plant Physiology Jun 1985, 78 (2) 399-404; DOI: 10.1104/pp.78.2.399
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 78, Issue 2
June 1985
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire