Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

O2 Uptake in the Light in Chlamydomonas

Evidence for Persistent Mitochondrial Respiration

Gilles Peltier, Pierre Thibault
Gilles Peltier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Thibault
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 1985. DOI: https://doi.org/10.1104/pp.79.1.225

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1985 American Society of Plant Biologists

Abstract

The nature of the process responsible for the stationary O2 uptake occurring in the light under saturating CO2 concentration in Chlamydomonas reinhardii has been investigated. For this purpose, a mass spectrometer with a membrane inlet system was used to measure O2 uptake and evolution in the algal suspension. First, we observed that the O2 uptake rate was constant (about 0.5 micromoles of O2 per milligram chlorophyll per minute) during a light to dark transition and was not affected by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Salicylhydroxamic acid had no effect on O2 uptake in the dark or in the light, but was found to have the same inhibitory effect either in the dark or in the light when added to cyanide-treated algae. The stimulation of the O2 uptake rate due to the uncoupling effect of carbonyl cyanide m-chlorophenylhydrazone was about the same in the dark or in the light. From these results, we conclude that mitochondrial respiration is maintained during illumination and therefore is not inhibited by high ATP levels. Another conclusion is that in conditions where photorespiration is absent, no other light-dependent O2 uptake process occurs. If Mehler reactions are involved, in Chlamydomonas, under conditions where both photosynthetic carbon oxidation and reduction cycles cannot operate (as in cyanide-treated algae), their occurrence in photosynthesizing algae either under saturating CO2 concentration or at the CO2 compensation point appears very unlikely. The comparison with the situation previously reported in Scenedesmus (R. J. Radmer and B. Kok 1976 Plant Physiol 58: 336-340) suggests that different O2 uptake processes might be present in these two algal species.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
O2 Uptake in the Light in Chlamydomonas
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
O2 Uptake in the Light in Chlamydomonas
Gilles Peltier, Pierre Thibault
Plant Physiology Sep 1985, 79 (1) 225-230; DOI: 10.1104/pp.79.1.225

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
O2 Uptake in the Light in Chlamydomonas
Gilles Peltier, Pierre Thibault
Plant Physiology Sep 1985, 79 (1) 225-230; DOI: 10.1104/pp.79.1.225
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 79, Issue 1
September 1985
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire