Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

Kinetic Characterization of Reduced Pyridine Nucleotide Dehydrogenases (Duroquinone-Dependent) in Cucurbita Microsomes

Paolo Pupillo, Vincenzo Valenti, Letizia De Luca, Rainer Hertel
Paolo Pupillo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vincenzo Valenti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Letizia De Luca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rainer Hertel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1986. DOI: https://doi.org/10.1104/pp.80.2.384

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1986 American Society of Plant Biologists

Abstract

Some properties of microsomal electron transfer chains, dependent for oxidase activity on addition of NADH or NADPH, duroquinone, and oxygen (L. De Luca et al., 1984, Plant Sci Lett 36: 93-98) are described. Activity is characterized by negatively cooperative kinetics toward reduced pyridine nucleotides, with limiting Km of 10 to 50 micromolar at pH 7.0 (increasing at lower pH), as well as toward duroquinone with limiting Km of 100 to 400 micromolar regardless of pH. Molecular oxygen is reduced by the enzyme complex with S0.5 of about 30 micromolar and production of H2O and H2O2, without superoxide involvement. The ratio NAD(P)H:O2 averages 1.35 in the presence of KCN and 1.85 in its absence. The pyridine nucleotide specificity of the dehydrogenases has been investigated by kinetic competition experiments. Some enzyme heterogeneity was established for all preparations. At least two enzymes are detectable in plasma membrane-enriched fractions: a major NAD(P)H dehydrogenase having an acid pH optimum, and an NADPH dehydrogenase active around neutrality. Addition of Triton X-100 strongly enhances the activity over most of the pH scale, but depresses it increasingly at pH values higher than 8.0, to the effect that pH profile shows, under these conditions, a major peak at about pH 5.8 for both NADH and NADPH oxidase. Results with endoplasmic reticulum preparations are similar, except that they suggest the presence of still more activities at and above pH 7. The results are interpreted in terms of different complexes catalyzing electron transfer from NAD(P)H to O2 without release of intermediates.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Kinetic Characterization of Reduced Pyridine Nucleotide Dehydrogenases (Duroquinone-Dependent) in Cucurbita Microsomes
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Kinetic Characterization of Reduced Pyridine Nucleotide Dehydrogenases (Duroquinone-Dependent) in Cucurbita Microsomes
Paolo Pupillo, Vincenzo Valenti, Letizia De Luca, Rainer Hertel
Plant Physiology Feb 1986, 80 (2) 384-389; DOI: 10.1104/pp.80.2.384

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Kinetic Characterization of Reduced Pyridine Nucleotide Dehydrogenases (Duroquinone-Dependent) in Cucurbita Microsomes
Paolo Pupillo, Vincenzo Valenti, Letizia De Luca, Rainer Hertel
Plant Physiology Feb 1986, 80 (2) 384-389; DOI: 10.1104/pp.80.2.384
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 80, Issue 2
February 1986
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire