Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherArticles
You have accessRestricted Access

Increased Abscisic Acid Biosynthesis during Plant Dehydration Requires Transcription

Felix Guerrero, John E. Mullet
Felix Guerrero
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John E. Mullet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1986. DOI: https://doi.org/10.1104/pp.80.2.588

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1986 American Society of Plant Biologists

Abstract

Excised pea plants were rapidly dehydrated to turgor pressures of 1.5 to 2.0 bars. After a 30 minute lag, abscisic acid (ABA) levels increased approximately 100-fold in the dehydrated plants. Pretreatment of plants with the transcription inhibitors actinomycin D or cordycepin or with an inhibitor of cytoplasmic protein synthesis prior to plant dehydration inhibited the synthesis of ABA. These results suggest that dehydration induced synthesis of ABA requires nuclear gene transcription.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Increased Abscisic Acid Biosynthesis during Plant Dehydration Requires Transcription
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Increased Abscisic Acid Biosynthesis during Plant Dehydration Requires Transcription
Felix Guerrero, John E. Mullet
Plant Physiology Feb 1986, 80 (2) 588-591; DOI: 10.1104/pp.80.2.588

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Increased Abscisic Acid Biosynthesis during Plant Dehydration Requires Transcription
Felix Guerrero, John E. Mullet
Plant Physiology Feb 1986, 80 (2) 588-591; DOI: 10.1104/pp.80.2.588
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 80, Issue 2
February 1986
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire