Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleArticles
You have accessRestricted Access

The Role of Carbohydrate in Maintaining Extensin in an Extended Conformation

Joel P. Stafstrom, L. Andrew Staehelin
Joel P. Stafstrom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Andrew Staehelin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1986. DOI: https://doi.org/10.1104/pp.81.1.242

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1986 American Society of Plant Biologists

Abstract

Monomers of the plant cell wall glycoprotein extensin are secreted into the wall where they become cross-linked to each other to form a rigid matrix. Expression of the extensin matrix is correlated with the inhibition of further cell elongation during normal development, with increased resistance to virulent pathogens and with other physiological responses characterized by wall strengthening. Carbohydrates make up about two-thirds of the mass of extensin. Arabinose oligomers linked to hydroxyproline residues represent 95% of the total carbohydrate with the remainder occurring as single residues of galactose linked to some serine residues. Electron microscopy of shadowed extensin shows the glycosylated form to be an easily visualized and highly elongated molecule. In contrast, extensin that has been deglycosylated with anhydrous hydrogen fluoride is difficult to resolve in the EM. Glycosylated extensin elutes from a gel filtration column much more rapidly than does the deglycosylated form, and from this analysis we have calculated respective Stokes' radii of 89 and 11 Ångstroms for these molecules. Others have shown that inhibition of extensin glycosylation has no effect on its secretion or insolubilization in the cell wall, but that this extensin cannot inhibit cell elongation. It is likely that carbohydrate moieties keep extensin in an extended conformation and that extensin must be in this conformation to form a cross-linked matrix that can function properly in vivo.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Role of Carbohydrate in Maintaining Extensin in an Extended Conformation
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Role of Carbohydrate in Maintaining Extensin in an Extended Conformation
Joel P. Stafstrom, L. Andrew Staehelin
Plant Physiology May 1986, 81 (1) 242-246; DOI: 10.1104/pp.81.1.242

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The Role of Carbohydrate in Maintaining Extensin in an Extended Conformation
Joel P. Stafstrom, L. Andrew Staehelin
Plant Physiology May 1986, 81 (1) 242-246; DOI: 10.1104/pp.81.1.242
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 81, Issue 1
May 1986
  • Table of Contents
  • Index by author

More in this TOC Section

  • Developmental Programming of Thermonastic Leaf Movement
  • BRASSINOSTEROID-SIGNALING KINASE5 Associates with Immune Receptors and Is Required for Immune Responses
  • Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status
Show more Articles

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire