Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Plant Factors Controlling Seed Set in Maize

The Influence of Silk, Pollen, and Ear-Leaf Water Status and Tassel Heat Treatment at Pollination

John B. Schoper, Robert J. Lambert, Bruce L. Vasilas, Mark E. Westgate
John B. Schoper
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Lambert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruce L. Vasilas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark E. Westgate
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published January 1987. DOI: https://doi.org/10.1104/pp.83.1.121

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1987 American Society of Plant Biologists

Abstract

In maize (Zea mays L.) large decreases in kernel number result when low water potentials (Ψw) and high temperatures occur during pollination. To gain insight into the basis for the decreased seed set, silk, pollen, and ear-leaf Ψw, the capability for silk osmotic adjustment, and pollen appearance were measured to determine their relationship to seed set. A multiple-eared or prolific (high carbohydrate availability to the pistillate inflorescence) hybrid (B73 × FR25), a heat sensitive hybrid (WF9 × A632), and a commercial hybrid (B73 × Mo17) were studied. A cross-pollination experiment, with pollination limited by pollen amount, was conducted to determine the impact on seed set of water and heat stressing the tassel and water stressing the ear. At low Ψw, silk Ψw and seed set were decreased whereas pollen Ψw, appearance, and viability were unaffected. High temperature resulted in a 2 megapascal decrease in pollen Ψw, visually damaged pollen being shed, decreased pollen viability, and, in two of the hybrids, substantially decreased pollen shed. Prolificacy did not result in increased silk solute accumulation but did result in superior seed production by the pistillate inflorescence at low Ψw. The magnitude of the decrease in silk solute potential was small (0.2 megapascal) and similar for all genotypes. One hybrid maintained a relatively high silk turgor but this hybrid also decreased the most in seed production when the pistillate inflorescence was water deficient. These results indicated an adverse effect of high temperature on pollen development, a positive relationship between seed production and silk water status, and no advantage to high silk turgor after silk emergence in maintaining seed production. Additionally, there was no evidence of variation in silk solute regulation capability among hybrids which varied in prolificacy, a trait important in drought tolerance, but the seed production of the pistillate inflorescence of the prolific hybrid was least affected by water deficit.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Plant Factors Controlling Seed Set in Maize
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Plant Factors Controlling Seed Set in Maize
John B. Schoper, Robert J. Lambert, Bruce L. Vasilas, Mark E. Westgate
Plant Physiology Jan 1987, 83 (1) 121-125; DOI: 10.1104/pp.83.1.121

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Plant Factors Controlling Seed Set in Maize
John B. Schoper, Robert J. Lambert, Bruce L. Vasilas, Mark E. Westgate
Plant Physiology Jan 1987, 83 (1) 121-125; DOI: 10.1104/pp.83.1.121
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 83, Issue 1
January 1987
  • Table of Contents
  • Index by author

More in this TOC Section

  • Is There a Role for Oligosaccharides in Seed Longevity? An Assessment of Intracellular Glass Stability
  • Selenium Assimilation and Volatilization from Dimethylselenoniopropionate by Indian Mustard
  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire