Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Concentrations of Abscisic Acid and Indoleacetic Acid in Cotton Fruits and Their Abscission Zones in Relation to Fruit Retention

Gene Guinn, Donald L. Brummett
Gene Guinn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald L. Brummett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published January 1987. DOI: https://doi.org/10.1104/pp.83.1.199

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1987 American Society of Plant Biologists

Abstract

An experiment was conducted with field-grown cotton (Gossypium hirsutum L.) to determine the effects of drought and an increase in available photosynthate on the abscisic acid (ABA) and indoleacetic acid (IAA) contents of 3-day-old bolls and their abscission zones. Photosynthate availability was manipulated by removing about two-thirds of the plants to permit increased irradiance, and thus photosynthesis, in the plant canopy. The demand for photosynthate was decreased by removing all bolls from the remaining plants. The thinning and defruiting operations were performed about 3 weeks after first flower. Control plants were neither thinned nor defruited. Effects of water deficit were observed by making three harvests at different times during a 2-week irrigation cycle. Increasing the availability of photosynthate increased boll retention, but had relatively little effect on the concentrations of ABA and IAA in bolls. However, it did increase the concentration of IAA in abscission zones. Water deficit increased the ABA content of bolls and abscission zones and decreased the IAA content of bolls and abscission zones. Across all treatments, the IAA content of abscission zones was positively correlated, and the ABA content of bolls was negatively correlated, with boll retention. The results indicate that stresses change the hormonal balance in ways that are consistent with observed increases in fruit abscission.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Concentrations of Abscisic Acid and Indoleacetic Acid in Cotton Fruits and Their Abscission Zones in Relation to Fruit Retention
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Concentrations of Abscisic Acid and Indoleacetic Acid in Cotton Fruits and Their Abscission Zones in Relation to Fruit Retention
Gene Guinn, Donald L. Brummett
Plant Physiology Jan 1987, 83 (1) 199-202; DOI: 10.1104/pp.83.1.199

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Concentrations of Abscisic Acid and Indoleacetic Acid in Cotton Fruits and Their Abscission Zones in Relation to Fruit Retention
Gene Guinn, Donald L. Brummett
Plant Physiology Jan 1987, 83 (1) 199-202; DOI: 10.1104/pp.83.1.199
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 83, Issue 1
January 1987
  • Table of Contents
  • Index by author

More in this TOC Section

  • Iron-Superoxide Dismutase Expression in Transgenic Alfalfa Increases Winter Survival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance
  • Role of Hormones in the Induction of Iron Deficiency Responses in Arabidopsis Roots
  • Reduction and Coordination of Arsenic in Indian Mustard
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire