Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMetabolism and Enzymology
You have accessRestricted Access

Changes in Levels of Intermediates of the C4 Cycle and Reductive Pentose Phosphate Pathway under Various Concentrations of CO2 in Maize Leaves

Hideaki Usuda
Hideaki Usuda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published January 1987. DOI: https://doi.org/10.1104/pp.83.1.29

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1987 American Society of Plant Biologists

Abstract

The rate of CO2 assimilation and levels of metabolites of the C4 cycle and reductive pentose phosphate pathway in an attached leaf of maize (Zea mays L) were measured over a range of intercellular CO2 concentration (Ci) of 10 to 190 microliters per liter. The CO2 assimilation rate was saturated at a Ci of around 175 microliters per liter. The levels of ribulose 1,5-bisphosphate and fructose 1,6-bisphosphate decreased substantially with increasing Ci. The levels of 3-phosphoglycerate, phosphoenolpyruvate (PEP), and pyruvate increased with increasing Ci. The level of dihydroxyacetone phosphate increased moderately from Ci of 10 microliters per liter to 20 to 50 microliters per liter and stayed almost constant over the rest of the range of Ci investigated. The levels of fructose 6-phosphate did not show any significant changes over the range of Ci. The levels of glucose 6-phosphate decreased slightly with increasing Ci. Although photosynthetically inactive pools of malate, asparate, and alanine could mask real changes in levels of the photosynthetically active pools of these compounds, the apparent levels of these compounds and the total amount of intermediates in the C4 cycle (malate, aspartate, pyruvate, PEP, and alanine) increased with increasing Ci. The results suggest that there is carbon input into the C4 cycle from the reductive pentose phosphate pathway which increases the level of total intermediates of the C4 cycle with increasing Ci.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Changes in Levels of Intermediates of the C4 Cycle and Reductive Pentose Phosphate Pathway under Various Concentrations of CO2 in Maize Leaves
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Changes in Levels of Intermediates of the C4 Cycle and Reductive Pentose Phosphate Pathway under Various Concentrations of CO2 in Maize Leaves
Hideaki Usuda
Plant Physiology Jan 1987, 83 (1) 29-32; DOI: 10.1104/pp.83.1.29

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Changes in Levels of Intermediates of the C4 Cycle and Reductive Pentose Phosphate Pathway under Various Concentrations of CO2 in Maize Leaves
Hideaki Usuda
Plant Physiology Jan 1987, 83 (1) 29-32; DOI: 10.1104/pp.83.1.29
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 83, Issue 1
January 1987
  • Table of Contents
  • Index by author

More in this TOC Section

  • Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species
  • Identification of Posttranslationally Modified 18-Kilodalton Protein from Rice as Eukaryotic Translation Initiation Factor 5A
  • Regulation of Maize Leaf Nitrate Reductase Activity Involves Both Gene Expression and Protein Phosphorylation
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire