Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMetabolism and Enzymology
You have accessRestricted Access

Conversion of Xanthoxin to Abscisic Acid by Cell-Free Preparations from Bean Leaves

Ram K. Sindhu, Daniel C. Walton
Ram K. Sindhu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel C. Walton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1987. DOI: https://doi.org/10.1104/pp.85.4.916

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1987 American Society of Plant Biologists

Abstract

Cell-free extracts from the leaves of Phaseolus vulgaris L. convert xanthoxin to abscisic acid. The enzyme activity in dialyzed or acetone-precipitated extracts shows a strong dependence on either NAD or NADP. The enzyme activity appears to be cytosolic with no significant activity observed in chloroplasts. The activity was observed in extracts from roots of Phaseolus vulgaris, and also in extracts prepared from the leaves of Pisum sativum L., Zea mays L., Cucurbita maxima Duchesne, and Vigna radiata L. Neither water stress nor cycloheximide appear to significantly affect the level of enzyme activity in leaves. No intermediates between xanthoxin and abscisic acid were detected.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Conversion of Xanthoxin to Abscisic Acid by Cell-Free Preparations from Bean Leaves
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Conversion of Xanthoxin to Abscisic Acid by Cell-Free Preparations from Bean Leaves
Ram K. Sindhu, Daniel C. Walton
Plant Physiology Dec 1987, 85 (4) 916-921; DOI: 10.1104/pp.85.4.916

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Conversion of Xanthoxin to Abscisic Acid by Cell-Free Preparations from Bean Leaves
Ram K. Sindhu, Daniel C. Walton
Plant Physiology Dec 1987, 85 (4) 916-921; DOI: 10.1104/pp.85.4.916
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 85, Issue 4
December 1987
  • Table of Contents
  • Index by author

More in this TOC Section

  • Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species
  • Identification of Posttranslationally Modified 18-Kilodalton Protein from Rice as Eukaryotic Translation Initiation Factor 5A
  • Regulation of Maize Leaf Nitrate Reductase Activity Involves Both Gene Expression and Protein Phosphorylation
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire