Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Cold Acclimation in Arabidopsis thaliana

Sarah J. Gilmour, Ravindra K. Hajela, Michael F. Thomashow
Sarah J. Gilmour
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ravindra K. Hajela
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael F. Thomashow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published July 1988. DOI: https://doi.org/10.1104/pp.87.3.745

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1988 American Society of Plant Biologists

Abstract

The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cold Acclimation in Arabidopsis thaliana
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cold Acclimation in Arabidopsis thaliana
Sarah J. Gilmour, Ravindra K. Hajela, Michael F. Thomashow
Plant Physiology Jul 1988, 87 (3) 745-750; DOI: 10.1104/pp.87.3.745

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Cold Acclimation in Arabidopsis thaliana
Sarah J. Gilmour, Ravindra K. Hajela, Michael F. Thomashow
Plant Physiology Jul 1988, 87 (3) 745-750; DOI: 10.1104/pp.87.3.745
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 87, Issue 3
July 1988
  • Table of Contents
  • Index by author

More in this TOC Section

  • Is There a Role for Oligosaccharides in Seed Longevity? An Assessment of Intracellular Glass Stability
  • Selenium Assimilation and Volatilization from Dimethylselenoniopropionate by Indian Mustard
  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire