Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Abscisic Acid Is Not the Only Stomatal Inhibitor in the Transpiration Stream of Wheat Plants

Rana Munns, Rod W. King
Rana Munns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rod W. King
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published November 1988. DOI: https://doi.org/10.1104/pp.88.3.703

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1988 American Society of Plant Biologists

Abstract

Xylem sap was collected from the transpiration stream of wheat (Triticum aestivum L.) plants and assayed for the presence of an inhibitor of transpiration using leaves detached from well-watered plants. Transpiration of detached leaves was reduced by nearly 60% by sap collected from plants in drying soil, and to a lesser extent (about 25%) by sap from plants in well-watered soil. As the soil dried the abscisic acid (ABA) concentration in the sap increased by about 50 times to 5 × 10−8 molar. However, the ABA in the sap did not cause its inhibitory activity. Synthetic ABA of one hundred times this concentration was needed to reduce transpiration rates of detached leaves to the same extent. Furthermore, inhibitory activity of the sap was retained after its passage through an immunoaffinity column to remove ABA. Xylem sap was also collected by applying pressure to the roots of plants whose leaf water status was kept high as the soil dried. Sap collected from these plants reduced transpiration to a lesser extent than sap from nonpressurised plants. This suggests that the inhibitory activity was triggered partly by leaf water deficit and partly by root water deficit.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Abscisic Acid Is Not the Only Stomatal Inhibitor in the Transpiration Stream of Wheat Plants
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abscisic Acid Is Not the Only Stomatal Inhibitor in the Transpiration Stream of Wheat Plants
Rana Munns, Rod W. King
Plant Physiology Nov 1988, 88 (3) 703-708; DOI: 10.1104/pp.88.3.703

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Abscisic Acid Is Not the Only Stomatal Inhibitor in the Transpiration Stream of Wheat Plants
Rana Munns, Rod W. King
Plant Physiology Nov 1988, 88 (3) 703-708; DOI: 10.1104/pp.88.3.703
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 88, Issue 3
November 1988
  • Table of Contents
  • Index by author

More in this TOC Section

  • Is There a Role for Oligosaccharides in Seed Longevity? An Assessment of Intracellular Glass Stability
  • Selenium Assimilation and Volatilization from Dimethylselenoniopropionate by Indian Mustard
  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire