Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleDevelopment and Growth Regulation
You have accessRestricted Access

Quantification of Indole-3-Acetic Acid in Dark-Grown Seedlings of the Diageotropica and Epinastic Mutants of Tomato (Lycopersicon esculentum Mill.)

David W. Fujino, Scott J. Nissen, A. Daniel Jones, David W. Burger, Kent J. Bradford
David W. Fujino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott J. Nissen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Daniel Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David W. Burger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kent J. Bradford
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published November 1988. DOI: https://doi.org/10.1104/pp.88.3.780

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1988 American Society of Plant Biologists

Abstract

Endogenous indoleacetic acid (IAA) levels were examined in 7-day-old, dark-grown tomato seedlings (Lycopersicon esculentum Mill. cv VFN8), and in two single-gene mutants, Epinastic and diageotropica. Gas chromatography-mass spectrometry was employed to quantify IAA using 13C6-[benzene ring]indoleacetic acid as internal standard. IAA concentrations ranged from 89 to 134 nanograms per gram dry weight and were not significantly different for the three genotypes. Ethylene over-production by dark-grown Epi seedlings is not likely to result from increased IAA. Assuming similar recovery percentages for each genotype, indole-3-ethanol, a purported storage form of IAA, was identified by GC-MS and found to be more prevalent in the parent tomato, VFN8, with only trace amounts observed in Epi. No IEt was detected by high performance liquid chromatography/fluorescence in dgt (detection limit >100 picograms).

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantification of Indole-3-Acetic Acid in Dark-Grown Seedlings of the Diageotropica and Epinastic Mutants of Tomato (Lycopersicon esculentum Mill.)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Quantification of Indole-3-Acetic Acid in Dark-Grown Seedlings of the Diageotropica and Epinastic Mutants of Tomato (Lycopersicon esculentum Mill.)
David W. Fujino, Scott J. Nissen, A. Daniel Jones, David W. Burger, Kent J. Bradford
Plant Physiology Nov 1988, 88 (3) 780-784; DOI: 10.1104/pp.88.3.780

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Quantification of Indole-3-Acetic Acid in Dark-Grown Seedlings of the Diageotropica and Epinastic Mutants of Tomato (Lycopersicon esculentum Mill.)
David W. Fujino, Scott J. Nissen, A. Daniel Jones, David W. Burger, Kent J. Bradford
Plant Physiology Nov 1988, 88 (3) 780-784; DOI: 10.1104/pp.88.3.780
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 88, Issue 3
November 1988
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire