Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMicrobe-Plant Interactions
You have accessRestricted Access

Induction of Sesquiterpene Cyclase and Suppression of Squalene Synthetase Activities in Plant Cell Cultures Treated with Fungal Elicitor

Urs Vögeli, Joseph Chappell
Urs Vögeli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph Chappell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1988. DOI: https://doi.org/10.1104/pp.88.4.1291

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1988 American Society of Plant Biologists

Abstract

Addition of elicitor, cell wall fragments of the fungus Phytophthora parasitica, to tobacco cell suspension cultures (Nicotiana tabacum) resulted in the rapid synthesis and secretion of large amounts of antibiotic sesquiterpenoids. Pulse-labeling experiments with [14C]acetate and [3H] mevalonate demonstrated that the induction of sesquiterpenoid biosynthesis, maximal by 6 to 9 hours after elicitor addition to the cell cultures, was paralleled by a rapid and large decline in the incorporation rate of radioactivity into sterols. Consequently, sterol accumulation was also inhibited upon addition of elicitor to the cell cultures. Sesquiterpene cyclase activity was absent from control cell cultures but induced to a maximum within 10 hours of elicitor addition to the cell cultures. The cyclase activity remained elevated for an additional 30 hours before declining. In contrast, squalene synthetase activity was suppressed to less than 15% of that found in control cells within 7 hours of elicitor addition. Our results suggest that the channeling of isoprenoid intermediates, and especially farnesyl diphosphate, into sesquiterpenoids occurred by a coordinated increase in the sesquiterpene cyclase and a decrease in the squalene synthetase enzyme activities. A reexamination of the data pertaining to the transient induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity (EC 1.1.1.34) in elicitor-treated cells suggested that, while the reductase activity was necessary for sesquiterpenoid biosynthesis, it functioned more to maintain a sufficient level of intermediates between mevalonate and farnesyl diphosphate rather than as a rate limiting step controlling the synthesis rate of any one class of isoprenoids.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Induction of Sesquiterpene Cyclase and Suppression of Squalene Synthetase Activities in Plant Cell Cultures Treated with Fungal Elicitor
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Induction of Sesquiterpene Cyclase and Suppression of Squalene Synthetase Activities in Plant Cell Cultures Treated with Fungal Elicitor
Urs Vögeli, Joseph Chappell
Plant Physiology Dec 1988, 88 (4) 1291-1296; DOI: 10.1104/pp.88.4.1291

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Induction of Sesquiterpene Cyclase and Suppression of Squalene Synthetase Activities in Plant Cell Cultures Treated with Fungal Elicitor
Urs Vögeli, Joseph Chappell
Plant Physiology Dec 1988, 88 (4) 1291-1296; DOI: 10.1104/pp.88.4.1291
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 88, Issue 4
December 1988
  • Table of Contents
  • Index by author

More in this TOC Section

  • The PsENOD12 Gene Is Expressed at Two Different Sites in Afghanistan Pea Pseudonodules Induced by Auxin Transport Inhibitors
  • 31P Relaxation Responses Associated with N2/O2 Diffusion in Soybean Nodule Cortical Cells and Excised Cortical Tissue
  • Observation of the Oxygen Diffusion Barrier in Soybean (Glycine max) Nodules with Magnetic Resonance Microscopy
Show more Microbe-Plant Interactions

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire