Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMetabolism and Enzymology
You have accessRestricted Access

Characteristics of Five New Photoautotrophic Suspension Cultures Including Two Amaranthus Species and a Cotton Strain Growing on Ambient CO2 Levels

Chunhe Xu, L. C. Blair, S. M. D. Rogers, Govindjee, J. M. Widholm
Chunhe Xu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. C. Blair
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. M. D. Rogers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Govindjee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. M. Widholm
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1988. DOI: https://doi.org/10.1104/pp.88.4.1297

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1988 American Society of Plant Biologists

Abstract

Suspension cultures of cotton (Gossypium hirsutum), Amaranthus cruentus, A. powellii, Datura innoxia, and a Nicotiana tabacum-N. glutinosa fusion hybrid were adapted to grow photoautotrophically under continuous light. The cotton strain grew with an atmosphere of ambient CO2 (about 0.06 to 0.07% in the culture room) while the other strains required elevated CO2 levels (5%). Photoautotrophy was indicated by the requirement for CO2 and for light for growth. The strains grew with doubling times near 14 days and had from 50 to 600 micrograms of chlorophyll per gram of fresh weight. The cells grew in small to moderate sized clumps with cell sizes from 40 to 70 micrometers (diameter). Like most photoautotrophic cultures described so far the ribulose 1,5-bisphosphate carboxylase (RuBPcase) activity levels were well below those of mature leaves. The phosphoenolpyruvate carboxylase levels were not elevated in the C4Amaranthus species. The cells showed high dark respiration rates and had lower net CO2 fixation under high O2 conditions. Dark CO2 fixation rates ranged from near 10 to 30% of that in light. Fluorescence emission spectra measurements show that the cell antenna pigments systems of the four strains examined are similar to that of chloroplasts of green plants. The cotton strain which was capable of growth under ambient CO2 conditions showed the unique properties of a high RuBPcase activation level in ambient CO2 and a stable ability to show net CO2 fixation in 21% O2 conditions.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characteristics of Five New Photoautotrophic Suspension Cultures Including Two Amaranthus Species and a Cotton Strain Growing on Ambient CO2 Levels
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Characteristics of Five New Photoautotrophic Suspension Cultures Including Two Amaranthus Species and a Cotton Strain Growing on Ambient CO2 Levels
Chunhe Xu, L. C. Blair, S. M. D. Rogers, Govindjee, J. M. Widholm
Plant Physiology Dec 1988, 88 (4) 1297-1302; DOI: 10.1104/pp.88.4.1297

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Characteristics of Five New Photoautotrophic Suspension Cultures Including Two Amaranthus Species and a Cotton Strain Growing on Ambient CO2 Levels
Chunhe Xu, L. C. Blair, S. M. D. Rogers, Govindjee, J. M. Widholm
Plant Physiology Dec 1988, 88 (4) 1297-1302; DOI: 10.1104/pp.88.4.1297
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 88, Issue 4
December 1988
  • Table of Contents
  • Index by author

More in this TOC Section

  • Biosynthesis of Cardiolipin in Plant Mitochondria
  • Inhibition of Threonine Dehydratase Is Herbicidal
  • Floral Scent Production in Clarkia (Onagraceae) (I. Localization and Developmental Modulation of Monoterpene Emission and Linalool Synthase Activity)
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire