Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMolecular Biology and Gene Regulation
You have accessRestricted Access

Plastid Transcription Activity and DNA Copy Number Increase Early in Barley Chloroplast Development

Brian J. Baumgartner, Jeffrey C. Rapp, John E. Mullet
Brian J. Baumgartner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey C. Rapp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John E. Mullet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 1989. DOI: https://doi.org/10.1104/pp.89.3.1011

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1989 American Society of Plant Biologists

Abstract

Plastid transcription activity and DNA copy number were quantified during chloroplast development in the first foliage leaf in dark-grown and illuminated barley (Hordeum vulgare L.) seedlings. Primary foliage leaves of seedlings given continuous illumination from 2 days post-imbibition reached a final mean length of 15 centimeters at 6.5 days, whereas primary leaves of dark-grown seedlings required 7 days to reach a similar length. Dividing cells were observed in the basal 0.5 to 1 centimeter of primary leaves until 5.5 days post-imbibition. Plastids isolated from cells located in the basal meristem of 4-day-old seedlings were small (∼2 micrometers in diameter), exhibited low transcription activity and contained approximately 130 copies of plastid DNA per organelle. Cell size increased from 18 to 60 micrometers in a 1 to 3 centimeter region located adjacent to the leaf basal meristem. In this region, transcriptional activity per plastid increased 10-fold and DNA copy number increased from 130 to 210. Plastid transcriptional activity declined rapidly in illuminated plants with increasing leaf cell age and plastid DNA copy number also declined but with a slower time course. In dark-grown seedlings, plastid transcriptional activity declined more slowly than in illuminated plants while DNA copy number remained constant with increasing cell age. These data show that plastid transcriptional activity and DNA copy number increase early in chloroplast development and that transcriptional activity per DNA template varies up to 5-fold during barley leaf biogenesis.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Plastid Transcription Activity and DNA Copy Number Increase Early in Barley Chloroplast Development
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Plastid Transcription Activity and DNA Copy Number Increase Early in Barley Chloroplast Development
Brian J. Baumgartner, Jeffrey C. Rapp, John E. Mullet
Plant Physiology Mar 1989, 89 (3) 1011-1018; DOI: 10.1104/pp.89.3.1011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Plastid Transcription Activity and DNA Copy Number Increase Early in Barley Chloroplast Development
Brian J. Baumgartner, Jeffrey C. Rapp, John E. Mullet
Plant Physiology Mar 1989, 89 (3) 1011-1018; DOI: 10.1104/pp.89.3.1011
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 89, Issue 3
March 1989
  • Table of Contents
  • Index by author

More in this TOC Section

  • Structural Features of the Maize sus1 Gene and Protein
  • Genes Galore: A Summary of Methods for Accessing Results from Large-Scale Partial Sequencing of Anonymous Arabidopsis cDNA Clones
  • Expression of the Arabidopsis Gene Akr Coincides with Chloroplast Development
Show more Molecular Biology and Gene Regulation

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire