Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMicrobe-Plant Interactions
You have accessRestricted Access

Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells

Role in Defense and Signal Transduction

Izydor Apostol, Peter F. Heinstein, Philip S. Low
Izydor Apostol
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter F. Heinstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip S. Low
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1989. DOI: https://doi.org/10.1104/pp.90.1.109

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1989 American Society of Plant Biologists

Abstract

Stimulation of cultured plant cells with elicitors of the defense response leads to the rapid destruction of a variety of water-soluble compounds including indoleacetic acid and certain fluorescent dyes. This destructive activity, which is often vigorously manifested within 5 minutes of elicitor addition, is shown to derive from the rapid production of H2O2 and its use by extracellular peroxidases. Because of its speed of appearance, this oxidative burst may qualify as the first induced line of defense against invading pathogens. Since H2O2 has been implicated as a second messenger of hormone-stimulated metabolic changes in some animal cells, its possible role in transduction of the defense signal in plants was also examined. Not only did exogenous H2O2 alone stimulate phytoalexin production in the plant cell suspension, but inhibition of elicitor-stimulated phytoalexin production was observed upon addition of catalase and other inhibitors of the oxidative burst. Furthermore, for inhibition to occur, the presence of catalase was required during elicitor addition, since if introduction of the enzyme was delayed until 1 hour after addition of the elicitor, no inhibition resulted. These results suggest that H2O2 also plays an important role in inducing subsequent defense responses such as phytoalexin production.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells
Izydor Apostol, Peter F. Heinstein, Philip S. Low
Plant Physiology May 1989, 90 (1) 109-116; DOI: 10.1104/pp.90.1.109

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells
Izydor Apostol, Peter F. Heinstein, Philip S. Low
Plant Physiology May 1989, 90 (1) 109-116; DOI: 10.1104/pp.90.1.109
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 90, Issue 1
May 1989
  • Table of Contents
  • Index by author

More in this TOC Section

  • The PsENOD12 Gene Is Expressed at Two Different Sites in Afghanistan Pea Pseudonodules Induced by Auxin Transport Inhibitors
  • 31P Relaxation Responses Associated with N2/O2 Diffusion in Soybean Nodule Cortical Cells and Excised Cortical Tissue
  • Observation of the Oxygen Diffusion Barrier in Soybean (Glycine max) Nodules with Magnetic Resonance Microscopy
Show more Microbe-Plant Interactions

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire