Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMolecular Biology and Gene Regulation
You have accessRestricted Access

Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential

Narendra K. Singh, Donald E. Nelson, David Kuhn, Paul M. Hasegawa, Ray A. Bressan
Narendra K. Singh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald E. Nelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Kuhn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul M. Hasegawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ray A. Bressan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published July 1989. DOI: https://doi.org/10.1104/pp.90.3.1096

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1989 American Society of Plant Biologists

Abstract

In response to adaptation to NaCl, cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) synthesize a major 26 kilodalton protein which has been named osmotin due to its induction by low water potentials. To help characterize the expression of osmotin in adapted cells, a cDNA clone for osmotin has been isolated. Abscisic acid induces messenger RNA encoding osmotin. Levels of this mRNA in adapted cells are approximately 15-fold higher than in unadapted cells. Message for osmotin is present at constant levels through the growth cycle of adapted cells, while in unadapted cells, the level decreases during exponential phase of growth and increases again when the cells approach stationary phase. While abscisic acid induces the message for osmotin, a low water potential environment appears to be required for accumulation of the protein. An osmotic shock to unadapted cells does not increase the amount of message or protein present most likely because this treatment does not induce immediately the accumulation of abscisic acid. The increased expression of osmotin in adapted cells is not correlated with an increase in osmotin gene copy number. Osmotin is homologous to a 24 kilodalton NaCl-induced protein in tomato, as well as thaumatin, maize α-amylase/trypsin inhibitor and a tobacco mosaic virus-induced pathogenesis-related protein.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential
Narendra K. Singh, Donald E. Nelson, David Kuhn, Paul M. Hasegawa, Ray A. Bressan
Plant Physiology Jul 1989, 90 (3) 1096-1101; DOI: 10.1104/pp.90.3.1096

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential
Narendra K. Singh, Donald E. Nelson, David Kuhn, Paul M. Hasegawa, Ray A. Bressan
Plant Physiology Jul 1989, 90 (3) 1096-1101; DOI: 10.1104/pp.90.3.1096
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 90, Issue 3
July 1989
  • Table of Contents
  • Index by author

More in this TOC Section

  • Metabolic Regulation of the Gene Encoding Glutamine-Dependent Asparagine Synthetase in Arabidopsis thaliana
  • The Maize (Zea mays L.) Cat1 Catalase Promoter Displays Differential Binding of Nuclear Proteins Isolated from Germinated and Developing Embryos and from Embryos Grown in the Presence and Absence of Abscisic Acid
  • Deletion of the Structural Gene for the NADH-Dehydrogenase Subunit 4 of Synechocystis 6803 Alters Respiratory Properties
Show more Molecular Biology and Gene Regulation

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire