Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Circadian Stomatal Rhythms in Epidermal Peels from Vicia faba

Holly L. Gorton, William E. Williams, Mary Elizabeth Binns, Craig N. Gemmell, Ellen A. Leheny, Andrew C. Shepherd
Holly L. Gorton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William E. Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary Elizabeth Binns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Craig N. Gemmell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ellen A. Leheny
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew C. Shepherd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1989. DOI: https://doi.org/10.1104/pp.90.4.1329

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1989 American Society of Plant Biologists

Abstract

Circadian rhythms in stomatal aperture and in stomatal conductance have been observed previously. Here we investigate circadian rhythms in apertures that persist in functionally isolated guard cells in epidermal peels of Vicia faba, and we compare these rhythms with rhythms in stomatal conductance in attached leaves. Functionally isolated guard cells kept in constant light display a rhythmic change in aperture superimposed on a continuous opening trend. The rhythm free-runs with a period of about 22 hours and is temperature compensated between 20 and 30°C. Functionally isolated guard cell pairs are therefore capable of sustaining a true circadian rhythm without interaction with mesophyll cells. Stomatal conductance in whole leaves displays a more robust rhythm, also temperature-compensated, and with a period similar to that observed for the rhythm in stomatal aperture in epidermal peels. When analyzed individually, some stomata in epidermal peels showed a robust rhythm for several days while others showed little rhythmicity or damped out rapidly. Rhythmic periods may vary between individual stomata, and this may lead to desynchronization within the population.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Circadian Stomatal Rhythms in Epidermal Peels from Vicia faba
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Circadian Stomatal Rhythms in Epidermal Peels from Vicia faba
Holly L. Gorton, William E. Williams, Mary Elizabeth Binns, Craig N. Gemmell, Ellen A. Leheny, Andrew C. Shepherd
Plant Physiology Aug 1989, 90 (4) 1329-1334; DOI: 10.1104/pp.90.4.1329

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Circadian Stomatal Rhythms in Epidermal Peels from Vicia faba
Holly L. Gorton, William E. Williams, Mary Elizabeth Binns, Craig N. Gemmell, Ellen A. Leheny, Andrew C. Shepherd
Plant Physiology Aug 1989, 90 (4) 1329-1334; DOI: 10.1104/pp.90.4.1329
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 90, Issue 4
August 1989
  • Table of Contents
  • Index by author

More in this TOC Section

  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
  • Calcium-Independent Activation of Salicylic Acid-Induced Protein Kinase and a 40-Kilodalton Protein Kinase by Hyperosmotic Stress
  • Enhancement of Na+ Uptake Currents, Time-Dependent Inward-Rectifying K+ Channel Currents, and K+Channel Transcripts by K+ Starvation in Wheat Root Cells
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire