Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMicrobe-Plant Interactions
You have accessRestricted Access

Lack of Systemic Suppression of Nodulation in Split Root Systems of Supernodulating Soybean (Glycine max [L.] Merr.) Mutants

Jane E. Olsson, Patricia Nakao, B. Ben Bohlool, Peter M. Gresshoff
Jane E. Olsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia Nakao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Ben Bohlool
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter M. Gresshoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1989. DOI: https://doi.org/10.1104/pp.90.4.1347

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1989 American Society of Plant Biologists

Abstract

Wild-type soybean (Glycine max [L] Merr. cv Bragg) and a nitrate-tolerant supernodulating mutant (nts382) were grown in split root systems to investigate the involvement of the autoregulation response and the effect of timing of inoculation on nodule suppression. In Bragg, nodulation of the root portion receiving the delayed inoculation was suppressed nearly 100% by a 7-day prior inoculation of the other root portion with Bradyrhizobium japonicum strain USDA 110. Significant suppression was also observed after a 24-hour delay in inoculation. Mutant nts382 in the presence of a low nitrate level (0.5 millimolar) showed little, if any, systemic suppression. Root fresh weights of individual root portions were similar for both wild type and nts382 mutant. When nts382 was grown in the absence of nitrate, a 7-day delay in inoculation resulted in only 30% suppression of nodulation and a significant difference in root fresh weight between the two sides, with the delayed inoculated side always being smaller. Nodulation tests on split roots of nts382, nts1116, and wild-type cultivars Bragg, Williams 82, and Clark demonstrated a difference in their systemic suppression ability. These observations indicate that (a) autoregulation deficiencies in mutant nts382 result in a reduction of systemic suppression of nodulation, (b) some suppression is detectable after 24 hours with a delayed inoculation, (c) the presence of low nitrate affects the degree of suppression and the root growth, and (d) soybean genotypes differ in their ability to express this systemic suppression.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Lack of Systemic Suppression of Nodulation in Split Root Systems of Supernodulating Soybean (Glycine max [L.] Merr.) Mutants
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Lack of Systemic Suppression of Nodulation in Split Root Systems of Supernodulating Soybean (Glycine max [L.] Merr.) Mutants
Jane E. Olsson, Patricia Nakao, B. Ben Bohlool, Peter M. Gresshoff
Plant Physiology Aug 1989, 90 (4) 1347-1352; DOI: 10.1104/pp.90.4.1347

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Lack of Systemic Suppression of Nodulation in Split Root Systems of Supernodulating Soybean (Glycine max [L.] Merr.) Mutants
Jane E. Olsson, Patricia Nakao, B. Ben Bohlool, Peter M. Gresshoff
Plant Physiology Aug 1989, 90 (4) 1347-1352; DOI: 10.1104/pp.90.4.1347
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 90, Issue 4
August 1989
  • Table of Contents
  • Index by author

More in this TOC Section

  • Observation of the Oxygen Diffusion Barrier in Soybean (Glycine max) Nodules with Magnetic Resonance Microscopy
  • Exogenous Ethylene Inhibits Nodulation of Pisum sativum L. cv Sparkle
  • Reversible O2 Inhibition of Nitrogenase Activity in Attached Soybean Nodules
Show more Microbe-Plant Interactions

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire