Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L.

Lawrence B. Flanagan, Jonathan P. Comstock, James R. Ehleringer
Lawrence B. Flanagan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan P. Comstock
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James R. Ehleringer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1991. DOI: https://doi.org/10.1104/pp.96.2.588

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1991 American Society of Plant Biologists

Abstract

In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L.
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L.
Lawrence B. Flanagan, Jonathan P. Comstock, James R. Ehleringer
Plant Physiology Jun 1991, 96 (2) 588-596; DOI: 10.1104/pp.96.2.588

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L.
Lawrence B. Flanagan, Jonathan P. Comstock, James R. Ehleringer
Plant Physiology Jun 1991, 96 (2) 588-596; DOI: 10.1104/pp.96.2.588
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 96, Issue 2
June 1991
  • Table of Contents
  • Index by author

More in this TOC Section

  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
  • Calcium-Independent Activation of Salicylic Acid-Induced Protein Kinase and a 40-Kilodalton Protein Kinase by Hyperosmotic Stress
  • Enhancement of Na+ Uptake Currents, Time-Dependent Inward-Rectifying K+ Channel Currents, and K+Channel Transcripts by K+ Starvation in Wheat Root Cells
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire