Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleDevelopment and Growth Regulation
You have accessRestricted Access

Characterization of Tobacco Expressing Functional Oat Phytochrome

Domains Responsible for the Rapid Degradation of Pfr Are Conserved between Monocots and Dicots

Joel R. Cherry, Howard P. Hershey, Richard D. Vierstra
Joel R. Cherry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Howard P. Hershey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard D. Vierstra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published July 1991. DOI: https://doi.org/10.1104/pp.96.3.775

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1991 American Society of Plant Biologists

Abstract

Constitutive expression of a chimeric oat phytochrome gene in tobacco (Nicotiana tabacum) results in the accumulation of a functional 124-kilodalton photoreceptor that markedly alters the phenotype of light-grown tobacco (Keller et al. [1989] EMBO J 8: 1005-1012). Here, we provide a detailed phenotypic and biochemical characterization of homozygous tobacco expressing high levels of oat phytochrome. Phenotypic changes include a substantial inhibition of stem elongation, decreased apical dominance, increased leaf chlorophyll content, and delayed leaf senescence. Oat phytochrome synthesized in tobacco is indistinguishable from that present in etiolated oats, having photoreversible difference spectrum maxima at 665 and 730 nanometers, exhibiting negligible dark reversion of phytochrome—far red-absorbing form (Pfr) to phytochrome—red-absorbing form (Pr), and existing as a dimer with an apparent size of approximately 300 kilodaltons. Heterodimers between the oat and tobacco chromoproteins were detected. Endogenous tobacco phytochrome and transgenically expressed oat phytochrome are rapidly degraded in vivo upon photoconversion of Pr to Pfr. Breakdown of both oat and tobacco Pfr is associated with the accumulation of ubiquitin-phytochrome conjugates, suggesting that degradation occurs via the ubiquitin-dependent proteolytic pathway. This result indicates that the factors responsible for selective recognition of Pfr by the ubiquitin pathway are conserved between monocot and dicot phytochromes. More broadly, it demonstrates that the domain(s) within a plant protein responsible for its selective breakdown can be recognized by the degradation machinery of heterologous species.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of Tobacco Expressing Functional Oat Phytochrome
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Characterization of Tobacco Expressing Functional Oat Phytochrome
Joel R. Cherry, Howard P. Hershey, Richard D. Vierstra
Plant Physiology Jul 1991, 96 (3) 775-785; DOI: 10.1104/pp.96.3.775

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Characterization of Tobacco Expressing Functional Oat Phytochrome
Joel R. Cherry, Howard P. Hershey, Richard D. Vierstra
Plant Physiology Jul 1991, 96 (3) 775-785; DOI: 10.1104/pp.96.3.775
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 96, Issue 3
July 1991
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire