Skip to main content

Main menu

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMolecular Biology and Gene Regulation
You have accessRestricted Access

Stress Responses in Alfalfa (Medicago sativa L.)

X. Molecular Cloning and Expression of S-Adenosyl-l-Methionine:Caffeic Acid 3-O-Methyltransferase, a Key Enzyme of Lignin Biosynthesis

Ganesan Gowri, Robert C. Bugos, Wilbur H. Campbell, Carl A. Maxwell, Richard A. Dixon
Ganesan Gowri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert C. Bugos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wilbur H. Campbell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carl A. Maxwell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard A. Dixon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 1991. DOI: https://doi.org/10.1104/pp.97.1.7

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1991 American Society of Plant Biologists

Abstract

S-Adenosyl-l-methionine:caffeic acid 3-O-methyltransferase (COMT, EC 2.1.1.6) catalyzes the conversion of caffeic acid to ferulic acid, a key step in the biosynthesis of lignin monomers. We have isolated a functionally active cDNA clone (pCOMT1) encoding alfalfa (Medicago sativa L.) COMT by immunoscreening a λZAPII cDNA expression library with anti-(aspen COMT) antibodies. The derived amino acid sequence of pCOMT1 is 86% identical to that of COMT from aspen. Southern blot analysis indicates that COMT in alfalfa is encoded by at least two genes. Addition of an elicitor preparation from bakers' yeast to alfalfa cell suspension cultures resulted in a rapid accumulation of COMT transcripts, which reached a maximum level around 19 hours postelicitation. Northern blot analysis of total RNA from different organs of alfalfa plants at various developmental stages showed that COMT transcripts are most abundant in roots and stems. Transcripts encoding ATP: i-methionine-S-adenosyl transferase (AdoMet synthetase, EC 2.5.1.6), the enzyme responsible for the synthesis of the methyl donor for the COMT reaction, were coinduced with COMT transcripts in elicitor-treated cells and exhibited a similar pattern of expression to that of COMT in different organs of alfalfa plants at various stages of development.

PreviousNext
Back to top

Table of Contents

Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Stress Responses in Alfalfa (Medicago sativa L.)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
Citation Tools
Stress Responses in Alfalfa (Medicago sativa L.)
Ganesan Gowri, Robert C. Bugos, Wilbur H. Campbell, Carl A. Maxwell, Richard A. Dixon
Plant Physiology Sep 1991, 97 (1) 7-14; DOI: 10.1104/pp.97.1.7

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Stress Responses in Alfalfa (Medicago sativa L.)
Ganesan Gowri, Robert C. Bugos, Wilbur H. Campbell, Carl A. Maxwell, Richard A. Dixon
Plant Physiology Sep 1991, 97 (1) 7-14; DOI: 10.1104/pp.97.1.7
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 97, Issue 1
September 1991
  • Table of Contents
  • Index by author

More in this TOC Section

  • Characterization and Expression of an Antifungal Zeamatin-like Protein (Zlp) Gene from Zea mays
  • Molecular Genetic Alteration of Plant Respiration (Silencing and Overexpression of Alternative Oxidase in Transgenic Tobacco)
  • Two Genes Encoding GF14 (14-3-3) Proteins in Zea mays (Structure, Expression, and Potential Regulation by the G-Box-Binding Complex)
Show more MOLECULAR BIOLOGY AND GENE REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2019 by The American Society of Plant Biologists

Powered by HighWire