Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMicrobe-Plant Interactions
You have accessRestricted Access

Accumulation of β-Fructosidase in the Cell Walls of Tomato Roots following Infection by a Fungal Wilt Pathogen

Nicole Benhamou, Jean Grenier, Maarten J. Chrispeels
Nicole Benhamou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean Grenier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maarten J. Chrispeels
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published October 1991. DOI: https://doi.org/10.1104/pp.97.2.739

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1991 American Society of Plant Biologists

Abstract

Active defense in plants is associated with marked metabolic alterations, but little is known about the exact role of the reported changes in specific activity of several enzymes in infected plant tissues. β-Fructosidase (invertase), the enzyme that converts sucrose into glucose and fructose, increases upon infection by fungi and bacteria. To understand the relationship between fungal growth and β-fructosidase accumulation, we used an antiserum raised against a purified deglycosylated carrot cell wall β-fructosidase to study by immunogold labeling the spatial and temporal distribution of the enzyme in susceptible and resistant tomato (Lycopersicon esculentum) root tissues infected with the necrotrophic fungus, Fusarium oxysporum f. sp. racidis-lycopersici. In susceptible plants, the enzyme started to accumulate in host cell walls about 72 hours after inoculation. Accumulation occurred only in colonized cells and was mainly restricted to areas where the walls of both partners contacted each other. In resistant plants, accumulation of β-fructosidase was noticeable as soon as 48 hours after inoculation and appeared to reach an optimum by 72 hours after inoculation. Increase in wall-bound β-fructosidase was not restricted to infected cells but occurred also, to a large extent, in tissues that remained uncolonized during the infection process. The enzyme also accumulated in wall appositions (papillae) and intercellular spaces. This pattern of enzyme distribution suggests that induction of β-fructosidase upon fungal infection is part of the plant's defense response. The possible physiological role(s) of this enzyme in infected tomato plants is discussed in relation to the high demand in energy and carbon sources during pathogenesis.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Accumulation of β-Fructosidase in the Cell Walls of Tomato Roots following Infection by a Fungal Wilt Pathogen
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Accumulation of β-Fructosidase in the Cell Walls of Tomato Roots following Infection by a Fungal Wilt Pathogen
Nicole Benhamou, Jean Grenier, Maarten J. Chrispeels
Plant Physiology Oct 1991, 97 (2) 739-750; DOI: 10.1104/pp.97.2.739

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Accumulation of β-Fructosidase in the Cell Walls of Tomato Roots following Infection by a Fungal Wilt Pathogen
Nicole Benhamou, Jean Grenier, Maarten J. Chrispeels
Plant Physiology Oct 1991, 97 (2) 739-750; DOI: 10.1104/pp.97.2.739
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 97, Issue 2
October 1991
  • Table of Contents
  • Index by author

More in this TOC Section

  • 31P Relaxation Responses Associated with N2/O2 Diffusion in Soybean Nodule Cortical Cells and Excised Cortical Tissue
  • Observation of the Oxygen Diffusion Barrier in Soybean (Glycine max) Nodules with Magnetic Resonance Microscopy
  • Exogenous Ethylene Inhibits Nodulation of Pisum sativum L. cv Sparkle
Show more Microbe-Plant Interactions

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire