Skip to main content

Main menu

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMetabolism and Enzymology
You have accessRestricted Access

Regulatory and Structural Properties of the Cyanobacterial ADPglucose Pyrophosphorylases

Alberto A. Iglesias, Genichi Kakefuda, Jack Preiss
Alberto A. Iglesias
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Genichi Kakefuda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jack Preiss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published November 1991. DOI: https://doi.org/10.1104/pp.97.3.1187

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1991 American Society of Plant Biologists

Abstract

ADPglucose pyrophosphorylase (EC 2.7.7.27) has been purified from two cyanobacteria: the filamentous, heterocystic, Anabaena PCC 7120 and the unicellular Synechocystis PCC 6803. The purification procedure gave highly purified enzymes from both cynobacteria with specific activities of 134 (Synechocystis) and 111 (Anabaena) units per milligram protein. The purified enzymes migrated as a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with molecular mass corresponding to 53 (Synechocystis) and 50 (Anabaena) kilodaltons. Tetrameric structures were determined for the native enzymes by analysis of gel filtrations. Kinetic and regulatory properties were characterized for the cyanobacterial ADPglucose pyrophosphorylases. Inorganic phosphate and 3-phosphoglycerate were the most potent inhibitor and activator, respectively. The Synechocystis enzyme was activated 126-fold by 3-phosphoglycerate, with saturation curves exhibiting sigmoidicity (A0.5 = 0.81 millimolar; nH = 2.0). Activation by 3-phosphoglycerate of the enzyme from Anabaena demonstrated hyperbolic kinetics (A0.5 = 0.12 millimolar; nH = 1.0), having a maximal stimulation of 17-fold. I0.5 values of 95 and 44 micromolar were calculated for the inhibition by inorganic phosphate of the Synechocystis and Anabaena enzyme, respectively. Pyridoxal-phosphate behaved as an activator of the cyanobacterial enzyme. It activated the enzyme from Synechocystis nearly 10-fold with high apparent affinity (A0.5 = 10 micromolar; nH = 1.8). Phenylglyoxal modified the cyanobacterial enzyme by inactivating the activity in the presence of 3-phosphoglycerate. Antibody neutralization experiments showed that anti-spinach leaf (but not anti-Escherichia coli) ADPglucose pyrophosphorylase serum inactivated the enzyme from cyanobacteria. When the cyanobacterial enzymes were resolved on sodium dodecyl sulfate- and two-dimensional polyacrylamide gel electrophoresis and probed with Western blots, only one protein band was recognized by the anti-spinach leaf serum. The same polypeptide strongly reacted with antiserum prepared against the smaller spinach leaf 51 kilodalton subunit, whereas the anti-54 kilodalton antibody raised against the spinach subunit reacted weakly to the cyanobacterial subunit. Regulatory and immunological properties of the cyanobacterial enzyme are more related to the higher plant than the bacterial enzyme. Despite this, results suggest that the ADPglucose pyrophosphorylase from cyanobacteria is homotetrameric in structure, in contrast to the reported heterotetrameric structures of the higher plant ADPglucose pyrophosphorylase.

PreviousNext
Back to top

Table of Contents

Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Regulatory and Structural Properties of the Cyanobacterial ADPglucose Pyrophosphorylases
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
Citation Tools
Regulatory and Structural Properties of the Cyanobacterial ADPglucose Pyrophosphorylases
Alberto A. Iglesias, Genichi Kakefuda, Jack Preiss
Plant Physiology Nov 1991, 97 (3) 1187-1195; DOI: 10.1104/pp.97.3.1187

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Regulatory and Structural Properties of the Cyanobacterial ADPglucose Pyrophosphorylases
Alberto A. Iglesias, Genichi Kakefuda, Jack Preiss
Plant Physiology Nov 1991, 97 (3) 1187-1195; DOI: 10.1104/pp.97.3.1187
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 97, Issue 3
November 1991
  • Table of Contents
  • Index by author

More in this TOC Section

  • The 58-Kilodalton Calmodulin-Binding Glutamate Decarboxylase Is a Ubiquitous Protein in Petunia Organs and Its Expression Is Developmentally Regulated
  • Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species
  • Identification of Posttranslationally Modified 18-Kilodalton Protein from Rice as Eukaryotic Translation Initiation Factor 5A
Show more METABOLISM AND ENZYMOLOGY

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2019 by The American Society of Plant Biologists

Powered by HighWire