Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleDevelopment and Growth Regulation
You have accessRestricted Access

Identification of Gibberellins in Spinach and Effects of Light and Darkness on their Levels

Manuel Talon, Jan A. D. Zeevaart, Douglas A. Gage
Manuel Talon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan A. D. Zeevaart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Douglas A. Gage
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1991. DOI: https://doi.org/10.1104/pp.97.4.1521

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1991 American Society of Plant Biologists

Abstract

The endogenous gibberellin (GA) content of spinach (Spinacia oleracea) was reinvestigated by combined gas chromatography-mass spectrometry analysis. The 13-hydroxy GAs: GA53, GA44, GA19, GA17, GA20, GA5, GA1, GA29, and GA8; the non-3, 13-hydroxy GAs: GA12, GA15, GA9, and GA51; and the 3β-hydroxy GAs: GA4, GA7, and GA34, were identified in spinach extracts by comparing full-scan mass spectra and Kovats retention indices with those of reference GAs. In addition, spinach plants contained GA7-isolactone, 16,17-dihydro-17-hydroxy-GA53, GA29-catabolite, 3-epi-GA1, and 10 uncharacterized GAs with mass spectra indicative of mono- and dihydroxy-GA12, monohydroxy-GA25, dihydroxy-GA24, and dihydroxy-GAg. The effect of light-dark conditions on the GA levels of the 13-hydroxylation pathway was studied by using labeled internal standards in selected ion monitoring mode. In short day, the GA levels were higher at the end of the light period than at the end of the dark period. Levels of GAs at the end of each short day were relatively constant. During the first supplementary light period of long day treatment, GA53 and GA19 declined dramatically, GA44 and GA1 decreased slightly, and GA20 increased. During the subsequent high-intensity light period, the GA20 level decreased and the levels of GA53, GA44, GA19, and GA1 increased slightly. Within 7 days after the beginning of long day treatment, similar patterns for GA53 and GA19 occurred. Furthermore, when these plants were transferred to darkness, an increase in the levels of GA53 and GA19 was observed. These results are compatible with the idea that in spinach, the flow through the GA biosynthetic pathway is much enhanced during the high-intensity light period, although GA turnover occurs also during the supplementary period of long day, both effects being responsible for the increase of GA20 and GA1 in long day.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Identification of Gibberellins in Spinach and Effects of Light and Darkness on their Levels
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Identification of Gibberellins in Spinach and Effects of Light and Darkness on their Levels
Manuel Talon, Jan A. D. Zeevaart, Douglas A. Gage
Plant Physiology Dec 1991, 97 (4) 1521-1526; DOI: 10.1104/pp.97.4.1521

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Identification of Gibberellins in Spinach and Effects of Light and Darkness on their Levels
Manuel Talon, Jan A. D. Zeevaart, Douglas A. Gage
Plant Physiology Dec 1991, 97 (4) 1521-1526; DOI: 10.1104/pp.97.4.1521
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 97, Issue 4
December 1991
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire