Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Solute Accumulation and Compartmentation during the Cold Acclimation of Puma Rye

Karen L. Koster, Daniel V. Lynch
Karen L. Koster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel V. Lynch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published January 1992. DOI: https://doi.org/10.1104/pp.98.1.108

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

During cold acclimation of Puma rye (Secale cereale L. cv Puma), the intracellular osmotic potential nearly doubles. During this period, the accumulation of glycinebetaine, proline, and soluble sugars was monitored. The amount of glycinebetaine increased from 290 to 1300 micrograms per gram fresh weight during the 4-week acclimation period. Proline content did not change during the first 3 weeks of acclimation but then increased from 27 to 580 micrograms per gram fresh weight during the next 3 weeks. The total soluble sugar content more than doubled by the second week of cold acclimation, increasing from 11 to 26 milligrams per gram fresh weight. Most of this increase can be attributed to the accumulation of sucrose and raffinose, whose levels increased from 2.4 and 0 to 11 and 5 milligrams per gram fresh weight, respectively. The content of monosaccharides, predominantly glucose, remained at a constant 10 milligrams per gram fresh weight throughout the acclimation period. A comparison of the sugar content of protoplasts versus vacuoles isolated from cold-acclimated leaves revealed that the extravacuolar volume contained monosaccharides, sucrose, and raffinose. Thus, the increased amounts of sucrose and raffinose that occur during cold acclimation are present in compartments external to the vacuole and may contribute to cryoprotection.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Solute Accumulation and Compartmentation during the Cold Acclimation of Puma Rye
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Solute Accumulation and Compartmentation during the Cold Acclimation of Puma Rye
Karen L. Koster, Daniel V. Lynch
Plant Physiology Jan 1992, 98 (1) 108-113; DOI: 10.1104/pp.98.1.108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Solute Accumulation and Compartmentation during the Cold Acclimation of Puma Rye
Karen L. Koster, Daniel V. Lynch
Plant Physiology Jan 1992, 98 (1) 108-113; DOI: 10.1104/pp.98.1.108
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 98, Issue 1
January 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • Iron-Superoxide Dismutase Expression in Transgenic Alfalfa Increases Winter Survival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance
  • Role of Hormones in the Induction of Iron Deficiency Responses in Arabidopsis Roots
  • Reduction and Coordination of Arsenic in Indian Mustard
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire