Flow Cytometric Analysis of Rhodamine 123 Fluorescence during Modulation of the Membrane Potential in Plant Mitochondria

Patrice X. Petit

Centre National de la Recherche Scientifique, (UPR39) Biochimie Fonctionnelle des Systèmes Membranaires Végétaux, groupe des Biosystèmes Membranaires, Batiment 24 and Service de Cytométrie (LP40), Gif sur Yvette, France

ABSTRACT

The fluorescent dye rhodamine 123, which selectively accumulates in mitochondria based on the membrane potential, was used with flow cytometry to evaluate variations in activity of mitochondria isolated from plant tissues. In the presence of succinate and ATP, potato (Solanum tuberosum L.) tuber mitochondrial activity was affected by metabolic inhibitors and compounds that modify the membrane potential. The more uniform the mitochondrial population, the higher the observed membrane potential. The reactive population corresponds to the proportion of intact mitochondria (94–97%) defined by classic methods. Changes in the light-scattering properties are more related to internal modifications affecting the inner membrane-matrix system of the mitochondria during metabolic modulation than to specific volume change or outer membrane surface modifications. We tested our approach using an Arum maculatum preparation that contains three different types of mitochondria and demonstrated the validity of the light-scatter measurements to distinguish the α, β, and γ mitochondria and to measure their ability to build up a membrane potential in the presence of succinate. These results demonstrate clearly that flow cytometric techniques using rhodamine 123 can be employed to study the activity in isolated plant mitochondria.

Fluorescent probes have been applied as optical indicators of the membrane potential differences in several types of cells, isolated organelles, and lipid vesicles (1, 4, 20, 31). The technique relies on membrane potential-dependent partitioning of charged lipophilic dye molecules across the membrane. Changes in membrane potential result in changes in the intensity of dye fluorescence, termed “redistribution signals” (4). Lipophilic cationic dyes have been used successfully to measure changes in the membrane potential of in situ or isolated mitochondria of yeast cells (9, 20), several kinds of animal cells (27), and, more recently, plant cells and protoplasts (13, 15, 26). In plant mitochondria, the dyes most widely used for mitochondria are either derivatives of rhodamine or cyanine dyes developed by Waggoner (30, 31). The laser dye, Rh123, has been extensively employed as a fluorescent stain of mitochondria in living cells (27). Because Rh123 is an aromatic cation, it has been assumed to distribute itself electrophoretically into the mitochondrial matrix in response to ΔΨ.

At high concentrations, Rh123 has toxic side effects, but Emaus et al. (6) have recently demonstrated that, at concentrations that do not inhibit mitochondrial function, Rh123 is indeed a sensitive and specific probe of ΔΨ in isolated mitochondria. Agents known to depolarize or deenergize mitochondria, such as uncouplers (valinomycin) and respiratory inhibitors (KCN, SHAM), decreased Rh123 fluorescence of mitochondria in cultured cells, whereas nigericin, which collapses ΔpH and raises ΔΨ, increases fluorescence. For Rh123, the energy-linked changes were accompanied by dye uptake into the matrix space and the concentration ratio in-to-out reached 4000:1 (6). In rat liver mitochondria, Rh123 also inhibits ADP-stimulated respiration (state 3) with a Ki of 12 μM and ATPase activity of inverted inner membrane vesicles with a Ki of 126 μM (6, 14, 16).

Mitochondria are known to swell or shrink in response to changes in conditions of incubation. The volume changes are commonly followed by observing either the intensity of light scattered at 90° to the incident beam, or the absorbance of a suspension, the assumption being that as mitochondria swell, their relative refractive index decreases and so does the intensity of light they scatter. Measurements of the light scatter (7, 10) demonstrate that changes in the intensity of scattered light are not reliable indices of changes of volume of mitochondria, and that changes in conformation with changes in metabolic state dominate changes in light scatter. At present, we do not know if the flow cytometric analysis that considered uniquely the objects passing through the laser beam has provided similar information.

Flow cytometry measurements of individual organelles have been performed on purified mouse and rat liver mito-

1 Abbreviations: Rh123, rhodamine 123; HCV, coefficient of variation calculated on the full width at half maximum of the integral of fluorescence; IGF, integral of green fluorescence; IGL, logarithm of the integral of fluorescence, three-order scale; LP, long pass filter; ΔΨ, transmembrane potential difference; SP, short pass filter; TPP+, tetraphenylphosphonium, FALS, forward low angle light scatter; r.u., relative units.
tissues (12, 19, 21, 24) and on mitochondria from plant tissues (17, 22). In the present report, we describe the use of the membrane potential-sensitive probe Rh123 to study the membrane potential-related fluorescence and the light scatter of purified plant mitochondria during modulation of the membrane potential.

MATERIALS AND METHODS

Preparation of Mitochondria

Potato (Solanum tuberosum L. cv Bintje) tuber mitochondria were prepared and purified on a Percoll step gradient as described by Petit et al. (23), with the modifications introduced by Sommarin et al. (29). Purified mitochondria were collected at the 23/40% Percoll interface and washed in 0.3 m mannitol, 0.1% BSA (fraction V, Sigma), and 10 mM Mops-KOH (pH 7.2) to remove the Percoll.

Arum maculatum mitochondria were isolated from the sterile part of the spadix on a discontinuous sucrose gradient as described by Lance and Chauveau (11). The flow cytometry experiments were performed on the main mitochondrial population for each stage of spadix development, Mp3 for the α stage, Mp2 mitochondria for the β stage, and Mp1 mitochondria for the γ stage, according to Chauveau and Tuquet (3). The crude mitochondrial preparation is loaded at the top of a step sucrose gradient (11) and as the main bands are taken up from the gradient they are respectively named from the top of the gradient to the bottom, Mp1, Mp2, and Mp3.

Flow Cytometry Analysis

Purified mitochondria (10–40 μg protein in 2 mL) were analyzed after staining with 5 nm rhodamine 123 (Eastman Kodak) on an EPICS V (Coulter Electronics, Hialeah, FL), with confocal optics and an argon laser (Spectra-Physics 2025–05, Mountain View, CA). The laser excitation was 488 nm and 400 mW. The filters were used were 515 nm LP interference, 515 nm LP absorbance, and 560 SP interference. Mitochondrial autofluorescence was tested in the absence of dye under different metabolic conditions (i.e. ± succinate, ± ADP, ± valinomycin) was found to vary less than 5%.

A standard 76 μm nozzle was used: we found that reducing the nozzle size did not improve the resolution. The sheath was at room temperature at 89.6 kPa and a differential pressure of 48.3 to 89.6 kPa. Each analysis was performed on 10⁶ particles at a rate of 3 to 4·10⁵ particles/s. Monoparametric representations were on 256 channels and biparametric representations were on a 64-channel scale.

For fluorescence measurement expression, we used IGFL, for which an increment of 27 channels (on 256 channels) represents a doubling. The dispersion of the mitochondrial population around the higher frequency peak was expressed as HCV, which was calculated from the full width at half maximum height on a linear scale (IGF). When a bimodal state is observed, a gating procedure allows the exact determination of the HCV for the pic of interest. IGFL was calculated from the values of the mean fluorescence channel x (logarithmic scale) converted to linear scale with y = 10 exp (1.1149 10⁻²·x) and normalized the sample with the highest fluorescence (succinate + ATP) as a reference within each experimental series.

Metabolic Activity and Membrane Potential

Membrane potential was measured with a TTP⁺ electrode (8) in parallel with oxygen uptake measurements at 25°C in an air-saturated medium. The value of the membrane potential was not corrected for the passive binding of the TTP⁺ (28). The final volume of 3 mL contained 0.3 m mannitol, 10 mM KCl, 5 mM MgCl₂, 0.5 mg mL⁻¹ BSA, and 10 mM potassium phosphate (pH 7.2). The integrity of the outer mitochondrial membrane was estimated by the latency of Cyt c oxidase activity as described in ref. 17.

Determination of Protein

Protein concentration was determined essentially as described (2) after solubilizing the samples in 5% (w/v) deoxycholate. BSA was used as the standard.

RESULTS AND DISCUSSION

Characteristics of the Mitochondrial Suspensions

Purified mitochondria exhibited a high degree of outer membrane integrity, with an average of 94 to 97% remaining intact. Respiratory activity in the presence of succinate and ADP was 240 ± 25 nmol O₂ min⁻¹ mg⁻¹ protein, with a respiratory control of 4.3 ± 0.3 (n = 8). A −220 to −230 mV membrane potential was generated under such conditions.

Mitochondrial Membrane Potential and Flow Cytometry Analysis

Our goal was to determine if the flow cytometer could detect variations in mitochondrial potential related to variations in mitochondrial metabolic activity (8) that may be associated with conformational changes affecting the inner mitochondrial membrane. Figure 1 shows a typical trace of the simultaneous measurement of O₂ consumption and of ΔΨ in purified potato tuber mitochondria. The membrane potential-related fluorescence of Rh123 in cytometry is also presented according to the states marked along the trace.

After the calibration of the TTP⁺ electrode with increasing TTP⁺ concentration (2.5, 2.5, and 5 μM), a slight change was observed upon addition of mitochondria. This change is partly due to the dilution of the TTP⁺ concentration by addition of the mitochondrial suspension, partly to an energy-independent uptake of TTP⁺ by the mitochondrial population, and also to some background metabolic ΔΨ. The energy-independent uptake is probably due both to a nonspecific fixation of the cation (28) and to the presence of a Donnan potential in nonenergized mitochondria. The addition of respiratory substrate (succinate) stimulated an O₂ consumption and led to a decrease of the TTP⁺ concentration in the medium, indicating a TTP⁺ uptake by the mitochondria and the generation of a transmembrane potential of −220 to −230 mV (no net phosphorylation, state 4). The addition of ADP resulted in a concomitant increase in oxidation rate (state 3) and a release of the lipophilic cation from the mitochondria.
Figure 1. Simultaneous recording of oxidation rates and membrane potential of purified potato tuber mitochondria in parallel with flow cytometric analysis of the Rh123 membrane potential-related fluorescence. Where indicated, purified potato tuber mitochondria were added to a final concentration of 0.5 mg protein/mL. ATP (100 μm) was added before succinate (5 mm). A sufficient addition of ADP (200 μm) gave a steady-state three rate of O₂ uptake. The logarithmic span of the calculated (8) membrane potential is indicated, giving an idea of the limitation of the method; potentials below 100 mV are not measurable by this method. The rates of O₂ uptake are indicated on the polarographic trace. Nigericin was 100 ng mg⁻¹ protein and valinomycin 25 ng mg⁻¹ protein. The monoparametric histograms correspond to the marked points (A, B, C, D, and E): the x axis is the fluorescence (IGFL) of the Rh123 on a 256 channel scale and the y axis is the frequency. A, Mitochondria (20 μg ml⁻¹) + Rh123; B, mitochondria + Rh123 + succinate + ATP; C, transition in the presence of ADP; D, after ADP consumption and nigericin addition; and E, after addition of valinomycin and collapsing of the membrane potential. The mean fluorescent channels and the HCV (%), calculated on a linear scale (IGF), are indicated.

The value of the membrane potential in state 3 was about -195 mV. After phosphorylation occurred, the decrease in oxidation rate between states 3 and 4 was associated with an increase in membrane potential. The addition of nigericin, which converts any ΔpH into ΔΨ, did not modify the membrane potential, but the subsequent addition of valinomycin caused a collapse of the membrane potential.

Each stage of the membrane potential development could be correlated with the results obtained from the flow cytometry analysis of the membrane potential-related fluorescence of Rh123 (Fig. 1A–E). The autofluorescence of unstained mitochondria under these conditions was very low (result not shown). After addition of Rh123, the total fluorescence increased (Fig. 1A), but the mitochondria were not uniformly stained. In addition to a bright population, a second population exhibited a low intensity of fluorescence close to the autofluorescence level of the mitochondria. Moreover, the dispersion of the population was high (HCV 26), indicative of a heterogeneity of staining under nonenergized conditions. After addition of succinate (Fig. 1B), the fluorescence of the mitochondria increased. In addition, under these conditions, the histogram indicated a greater homogeneity of the mitochondrial population (HCV 22). The energized mitochondria, which are significantly more fluorescent than the nonenergized ones, represent approximately 94% of the mitochondrial population. Addition of ADP decreased the fluorescence (Fig. 1C), and, after full consumption of this limiting ADP, addition of nigericin did not increase the fluorescence (Fig. 1D). A subsequent addition of valinomycin (in the presence of K⁺) to the energized mitochondria collapsed the membrane potential and lowered the fluorescence of individual organelles (Fig. 1E). However, the reduction of the fluorescence was not complete and the residual fluorescence remained higher than before energization. Furthermore, more mitochondria had significant fluorescence compared with nonenergized mitochondria (Fig. 1A). It seems that a small amount of dye that had access to internal binding sites during the energization of the mitochondria could not be removed during the deenergization.

Figure 2. Cytogram corresponding to 10⁵ energized potato tuber mitochondria (succinate + ATP) comparing light scatter (FALS) and rhodamine 123 fluorescence (IGFL). A, Biparametric representation of FALS against IGFL. Three classes of frequency are indicated by the contours that delimit coordinates having (a) >250 mitochondria, (b) >50 mitochondria, and (c) >25 mitochondria. Corresponding histograms are shown as projections. B, Light scatter (FALS) and C, fluorescence (IGFL). In panel B, the numbers (1) and (2) distinguish, respectively, the mitochondrial subpopulation of low FALS (bell-shaped) and the mitochondrial subpopulation of high FALS.
Membrane Potential and Light Scatter

Figure 2A shows the biparametric representation of the energized mitochondria (succinate + ATP) comparing observed FALS (Fig. 2B) and the Rh123 fluorescence (Fig. 2C). As can be seen, there is a bell-shaped population of low FALS values (a) and a minor population of higher FALS values (b). The “gating windows” were set as described in the legend to Figure 2A. These allow the study of one parameter as a function of the other.

Initially, gating windows on FALS signals are set to collect IGFL signals correlated with mitochondria displaying FALS signals in either the smaller (3–12 channels), the medium (12–24 channels), or the larger (24–61 channels) FALS subpopulations of purified mitochondria. As can be seen in Figure 3A, the mean fluorescence varied little as a function of the light scatter. The particles of medium and high light scatter (Fig. 3C and D) exhibit two subpopulations, one of lower and one of higher fluorescence than the population of lower light scatter (Fig. 3B). The proportion of mitochondria in the low and high fluorescence subpopulation changed as the light scatter changed.

The mitochondria of low FALS (Fig. 3B) are homogeneously distributed around the mean fluorescence value (mean IGFL = 8.0 ± 2.9), whereas the particles of high FALS belong to a widely distributed population containing both mitochondria of low fluorescent (mean IGFL = 6.6 ± 2.2) and of high fluorescent mitochondria (mean IGFL = 14.4 ± 3.7) (Fig. 3D). Contrary to expectation, the mitochondria of high FALS are composed of two subpopulations, one (the major) of low fluorescence and another (the minor) of high fluorescence.

Subsequently, we set gating windows on the IGFL (Fig. 4A). Analysis of the FALS values extracted from the gating windows designated on the fluorescence channels shows that 4% of the particles have high fluorescence, corresponding to particles having a high light scatter (FALS mean value 20.3) (Fig. 4B), and 96% of the particles having low or medium fluorescence belong to a low light scatter population with a mean FALS value of 8.0 (Fig. 4C). Thus, we conclude that there is a positive correlation between Rh123 staining and FALS; the higher the fluorescence, the higher the light scatter.

Modulation of the Rhodamine 123 Fluorescence during NADH Oxidation

Table I describes the modulation of the mitochondrial membrane potential through successive additions of NADH, ADP, and ionophores such as nigericin and valinomycin. To compare with the results obtained with the TPP+ electrode (Fig. 1), the membrane potential values are presented.

The photomultiplier was set such that less than 1% of objects exceeded channel 20 fluorescence units. After addition of Rh123, the mean fluorescence increased, but the mitochondria were not uniformly stained (Fig. 1A). Few mitochondria exceed the initial arbitrary fluorescence threshold (6.7% > channel fluorescence 20).

After addition of NADH, the fluorescence of mitochondria increased as a consequence of the high membrane potential (~220 mV); 86% > channel 20. The distribution indicates more homogeneity (lower HCV) of the mitochondrial population with respect to the Rh123 fluorescence if compared with the nonenergized population (Table I). Addition of ADP decreased the membrane potential to ~189 mV; accordingly, the IGFL decreased. Addition of nigericin in the presence of
K⁺ did not modify ΔΨ or IGFL. This result contrasts with that obtained with rat liver mitochondria studied under similar conditions (24) in which nigericin increased both ΔΨ and fluorescence of Rh123, as expected from the conversion of the ΔpH into ΔΨ. However, it is in agreement with the succinate data discussed above. A subsequent addition of valinomycin to energized mitochondria lowered the fluorescence of individual organelles and increased heterogeneity (the HCV increased). However, as with succinate, the reduction of fluorescence was incomplete, with the residual fluorescence remaining higher than before energization (21% > channel fluorescence 20).

Flow Cytometry Analysis in the Presence of Different Substrates

Table II shows the membrane potential-dependent fluorescence of mitochondria with different respiratory substrates. The values of the measured membrane potential under non-phosphorylating conditions varied slightly with the different substrates. For NADH and succinate, the ΔΨ measured were close to −220 mV and decreased by about 33 to 35 mV under phosphorylating conditions. With malate (+ glutamate), the ΔΨ was smaller (−186 mV) and the depolarization was less (31 mV).

The differences in Rh123 fluorescence measured in the presence of different substrates was slightly larger than the difference in ΔΨ recorded with the TPP⁺ electrode, i.e. succinate 87.5, NADH 81, and malate (+ glutamate) 73.5 r.u.. The effect of ADP is also correlated to the decrease of the absolute values of the membrane potential and varied in a similar proportion.

Although the flow cytometric analysis of the Rh123 fluorescence changes are in agreement with the TPP⁺ measurements of ΔΨ, it also provides an assessment of the uniformity

| Table I. Effects of ADP Addition on the Membrane Potential-Related Fluorescence of Rhodamine 123 in Potato Tuber Mitochondria Established in the Presence of NADH as Respiratory Substrate |
|---|---|---|---|---|
| Successive Additions | Respiration Rate* (nmol O₂ min⁻¹ mg⁻¹ protein) | Membrane Potential (mV) | IGFL (Mean Channel) | IGFL (Relative Values) | HCV% |
| Mitochondria | 0 | 1.3 | 41.5 | ND | <1 |
| + Rh123 | 0 | 6.3 | 58.3 | 26 | 6.7 |
| + NADH | 45 | −220 | 27.3 | 100 | 22 | 85.9 |
| + ADP | 120 | −189 | 23.4 | 90.5 | 23 | 75.9 |
| + Nigericin | 119 | −220 | 27.4 | 100.3 | 22 | 86.3 |
| + Valinomycin | 173 | 0 | 12.5 | 66.5 | 25 | 21.5 |

* Respiratory activity measured within the oxygen electrode simultaneously with the membrane potential.
® HCV calculated as described in "Materials and Methods," on a linear scale (IGF); when bimodal shape is observed, a gating procedure allows the exact determination of the HCV for the pie of interest.
of conformational changes (FALS) taking place. Note that with the same ΔΨ, −220 mV, succinate gave an IGFL of 87.5 and NADH of 81 r.u.. Succinate oxidation is stimulated by ATP addition (27), but the membrane potential stays unchanged. However, the membrane potential-dependent fluorescence of Rh123 was enhanced, IGFL going from 87.5 to 100 r.u., and the mitochondrial population became more uniform (HCV decreased; data not shown). The addition of ADP in the presence of the three substrates induced a fluorescence decrease in parallel with the ΔΨ decrease (Table II).

Application of the Method with Arum maculatum Spadix Mitochondria

The α, β, and γ types of mitochondria differ in ultrastructure as described by Chauveau and Tuquet (3), but the volume delimited by the outer membrane appears unchanged. The FALS (Table III) also differ among the mitochondrial types: 62.3 for α; 50.7 for β; and 42.7 r.u. for γ. This means that it is changes in the inner membrane and matrix that are affecting the light scatter properties of the mitochondria.

Three types of mitochondria exhibited a minor decrease in light scatter during the energization and an increase in light scatter increase during the deenergization (Table III). This means that flow cytometry analysis of the light scatter can discriminate inner membrane-matrix changes linked to metabolic variation through light scatter.

The α, β, and γ mitochondria differ in the maximal Rh123 fluorescence reached with succinate as a substrate, less for the α and β types than for the γ type: for IGFL, γ = 100; β = 92.7; α = 84.7 r.u. The effect of ATP on succinate oxidation is very important in α and β types (increment of 10.8 and 9.9

Table II. Membrane Potential-Related Fluorescence of Rhodamine 123 in Mitochondrial (Potato Tuber) Population Supplemented with Different Respiratory Substrates

<table>
<thead>
<tr>
<th>Successive Additions</th>
<th>Membrane Potential-Related Fluorescence (IGFL) Mean channel</th>
<th>Membrane Potential Value</th>
<th>Respiratory Activity nmol O2 min⁻¹ mg⁻¹ protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondria</td>
<td>1.3</td>
<td>41.5</td>
<td></td>
</tr>
<tr>
<td>+ Rh123</td>
<td>2.3</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td>+ Succinate</td>
<td>30.3</td>
<td>87.5</td>
<td>-220</td>
</tr>
<tr>
<td>+ Succinate + ATP</td>
<td>35.5</td>
<td>100</td>
<td>-222</td>
</tr>
<tr>
<td>+ Succinate + ADP</td>
<td>26.3</td>
<td>78.9</td>
<td>-185</td>
</tr>
<tr>
<td>+ NADH</td>
<td>27.3</td>
<td>81</td>
<td>-220</td>
</tr>
<tr>
<td>+ NADH + ATP</td>
<td>27.3</td>
<td>81</td>
<td>-220</td>
</tr>
<tr>
<td>+ NADH + ADP</td>
<td>23.4</td>
<td>73.3</td>
<td>-187</td>
</tr>
<tr>
<td>+ Malate + glutamate</td>
<td>23.5</td>
<td>73.5</td>
<td>-186</td>
</tr>
<tr>
<td>+ Malate + glutamate + ATP</td>
<td>23.6</td>
<td>73.7</td>
<td>-187</td>
</tr>
<tr>
<td>+ Malate + glutamate + ADP</td>
<td>19.2</td>
<td>65.8</td>
<td>-155</td>
</tr>
</tbody>
</table>

Table III. Rhodamine 123 Fluorescence and Forward Low Angle (10–20°) Light Scatter of α, β, and γ Types of Purified A. maculatum Mitochondria

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mitochondria Type</th>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGFL</td>
<td>FALS</td>
<td>IGFL</td>
<td>FALS</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>61.9</td>
<td>62.3</td>
<td>61.8</td>
<td>50.6</td>
</tr>
<tr>
<td>+ Rhodamine 123</td>
<td>67.1</td>
<td>72.6</td>
<td>92.7</td>
<td>50.1</td>
</tr>
<tr>
<td>+ Succinate</td>
<td>73.9</td>
<td>82.8</td>
<td>92.7</td>
<td>50.1</td>
</tr>
<tr>
<td>+ ATP</td>
<td>84.7</td>
<td>60.9</td>
<td>92.7</td>
<td>50.1</td>
</tr>
<tr>
<td>+ Valinomycin</td>
<td>72.5</td>
<td>62.8</td>
<td>73.2</td>
<td>54.0</td>
</tr>
</tbody>
</table>
r.u.) and very low with the γ type (increment of 2.7 r.u.), whereas the absolute level of the fluorescence with succinate is close to the maximum (97.3 r.u.) without ATP.

CONCLUSION

The flow cytometric analysis of the membrane potential-dependent fluorescence allows description of the mitochondrial population under different metabolic situations. Low probe concentration (5 nM Rh123) avoids the uncoupling effect of Rh123 (11–13), at much higher concentrations (8, 19). This low probe concentration is possible because of the optical advantages of the flow cytometer compared with conventional fluorometers.

The integrity (94–97%) of the Percoll-purified potato tubers mitochondria correlated with the percentage of particles able to built up a membrane potential in the presence of succinate and ATP (96% over channel 10, Fig. 1).

In studies of whole plant or animal cells, differences in light scattering properties are typically used to distinguish the size of the objects. However, as previously described (24), with particles less than 1 μm measured on a relatively large FALS (11–20°), the correlation between particle size and right angle light scatter no longer holds (16). The 11 to 20° used in this study is indeed wide, considering the small size of the potato tuber mitochondria (0.6 μm as mean value [22] determined by flow cytometry analysis and correlated with the electron microscopic evaluation). In this situation, the FALS acquires some characteristics of broad (90°) angle light scattering in that it is sensitive to the internal state of the organelle and to the nature and state of the membrane components. The light scatter thus measures primarily the internal changes in the inner membrane and matrix of the mitochondria. Their is no simple relation between the “size” or the “volume” of the mitochondria and the FALS (24).

When deenergized mitochondria exhibited heterogeneous Rh123 staining, hyperpolarization reduced the dispersion of the population (low HCV), especially when the Δψ was at its maximum (Fig. 1, Table I). In the resting state, the composition of the mitochondrial membranes plays a major role in the initial Rh123 binding. Other characteristics of purified mitochondria, i.e. surface charge density and Donnan potential, are additional factors of these intrinsic membrane determinants, i.e. lipid/protein ratio, degradation process to explain the initial dye binding or the residual dye fluorescence after deenergization. The high affinity binding sites for cationic lipophilic probes described by Colonna et al. (5) could be associated with the fact that the fluorescence does not go back to the initial level after deenergization. A similar heterogeneity has been noted for purified animal mitochondria (24) and plant mitochondria (22).

The use of the method we have devised to study the fluorescence and light scatter characteristics of different types of *A. maculatum* mitochondria has demonstrated the precision and applicability of flow cytometry analysis.

The advantages of flow cytometry over measurements upon bulk suspensions are multiple: (a) use of extremely small samples facilitating the study of mitochondria extracted from protoplasts, or from parts of the plant where the yield is low and not adequate for the O₂ or TPP⁺ electrode measurements; (b) assessment of population uniformity; (c) multivariate analysis of attributes of individual mitochondria (19, 21, 24); (d) possibility of sorting subpopulations for subsequent analysis if micromethods are available.

ACKNOWLEDGMENTS

The author would like to thank P. Müller and D. Marie for their technical assistance, and S.C. Brown, P. Diolez, and S. Sazer for helpful discussions.

LITERATURE CITED

14. Mai M, Allison WS (1983) Inhibition of an oligomycin sensitive ATPase by cationic dyes, some of which are atypical uncouplers of the intact mitochondria. Arch Biochem Biophys 221: 467–476