Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Regulation of Photosynthetic Rate of Two Sunflower Hybrids under Water Stress

Carmen Gimenez, Valerie J. Mitchell, David W. Lawlor
Carmen Gimenez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valerie J. Mitchell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David W. Lawlor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1992. DOI: https://doi.org/10.1104/pp.98.2.516

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

The effect of short-term water stress on photosynthesis of two sunflower hybrids (Helianthus annuus L. cv Sungro-380 and cv SH-3622), differing in productivity under field conditions, was measured. The rate of CO2 assimilation of young, mature leaves of SH-3622 under well-watered conditions was approximately 30% greater than that of Sungro-380 in bright light and elevated CO2; the carboxylation efficiency was also larger. Growth at large photon flux increased assimilation rates of both hybrids. The changes in leaf composition, including cell numbers and sizes, chlorophyll content, and amounts of total soluble and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) protein, and in Rubisco activity and amount of ribulose-1,5-bisphosphate (RuBP) were determined to assess the factors regulating the differences in assimilation of the hybrids at high and low water potentials. The amounts of chlorophyll, soluble protein, Rubisco protein and the initial activity of Rubisco and its activation state did not differ significantly between hybrids. However, unstressed leaves of SH-3622 had more, smaller cells per unit area and 60% more RuBP per unit leaf area than that of Sungro-380. Water stress developing over 4 days decreased the assimilation of both hybrids similarly. Changes in the amounts of chlorophyll, soluble and Rubisco protein, and Rubisco activity and activation state were small and were not sufficient to explain the decrease in photosynthesis; neither was decreased stomatal conductance (or stomatal “patchiness”). Reduction of photosynthesis per unit leaf area from 25 to 5 micromoles CO2 per square meter per second in both hybrids was caused by a decrease in the amount of RuBP from approximately 130 to 40 micromoles per square meter in SH-3622 and from 80 to 40 micromoles per square meter in Sungro. Differences between hybrids and their response to water stress is discussed in relation to control of RuBP regeneration.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of Photosynthetic Rate of Two Sunflower Hybrids under Water Stress
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Regulation of Photosynthetic Rate of Two Sunflower Hybrids under Water Stress
Carmen Gimenez, Valerie J. Mitchell, David W. Lawlor
Plant Physiology Feb 1992, 98 (2) 516-524; DOI: 10.1104/pp.98.2.516

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Regulation of Photosynthetic Rate of Two Sunflower Hybrids under Water Stress
Carmen Gimenez, Valerie J. Mitchell, David W. Lawlor
Plant Physiology Feb 1992, 98 (2) 516-524; DOI: 10.1104/pp.98.2.516
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 98, Issue 2
February 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • Is There a Role for Oligosaccharides in Seed Longevity? An Assessment of Intracellular Glass Stability
  • Selenium Assimilation and Volatilization from Dimethylselenoniopropionate by Indian Mustard
  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire