Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMetabolism and Enzymology
You have accessRestricted Access

Evidence for the Involvement of Sucrose Phosphate Synthase in the Pathway of Sugar Accumulation in Sucrose-Accumulating Tomato Fruits

Najeh Dali, Dominique Michaud, Serge Yelle
Najeh Dali
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dominique Michaud
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Serge Yelle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1992. DOI: https://doi.org/10.1104/pp.99.2.434

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

To better understand the mechanism of sugar unloading and sugar concentration in hexose- and sucrose-accumulating tomato fruits (Lycopersicon chmielewskii and L. esculentum, respectively) and to determine the causes of the late accumulation of sucrose present in sucrose-accumulating tomato fruits, the assimilation of [3H](fructosyl)-sucrose was studied. Key enzymes involved in carbohydrate metabolism were also assayed. The results demonstrated that the low level of sucrose present in young fruits accumulates directly without undergoing hydrolysis, suggesting a symplastic pathway for sucrose unloading. By contrast, the large quantity of the sucrose present in ripe sucrose-accumulating fruits originates from hydrolysis and resynthesis, suggesting an apoplastic pathway for sucrose unloading. The increase in sucrose level observed in sucrose-accumulating fruits is associated with a gradual decline in invertase activity and an increase in sucrose phosphate synthase activity. This latter enzyme seems to play a key biochemical role in the accumulation of sucrose and the establishment of a high sugar content in tomato fruits.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for the Involvement of Sucrose Phosphate Synthase in the Pathway of Sugar Accumulation in Sucrose-Accumulating Tomato Fruits
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evidence for the Involvement of Sucrose Phosphate Synthase in the Pathway of Sugar Accumulation in Sucrose-Accumulating Tomato Fruits
Najeh Dali, Dominique Michaud, Serge Yelle
Plant Physiology Jun 1992, 99 (2) 434-438; DOI: 10.1104/pp.99.2.434

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Evidence for the Involvement of Sucrose Phosphate Synthase in the Pathway of Sugar Accumulation in Sucrose-Accumulating Tomato Fruits
Najeh Dali, Dominique Michaud, Serge Yelle
Plant Physiology Jun 1992, 99 (2) 434-438; DOI: 10.1104/pp.99.2.434
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 99, Issue 2
June 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • Immediate Activation of Respiration in Petroselinum crispum L. in Response to the Phytophthora megasperma f. sp. Glycinea Elicitor
  • The Metabolism of Gibberellin A20 to Gibberellin A1 by Tall and Dwarf Mutants of Oryza sativa and Arabidopsis thaliana
  • A Mutation at the fad8 Locus of Arabidopsis Identifies a Second Chloroplast [omega]-3 Desaturase
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire